TDA8543
2 W BTL audio amplifier

Product specification
File under Integrated Circuits, IC01

1997 Jun 12
FEATURES

- Flexibility in use
- Few external components
- Low saturation voltage of output stage
- Gain can be fixed with external resistors
- Standby mode controlled by CMOS compatible levels
- Low standby current
- No switch-on/switch-off plops
- High supply voltage ripple rejection
- Protected against electrostatic discharge
- Outputs short-circuit safe to ground, V_{CC} and across the load
- Thermally protected.

GENERAL DESCRIPTION

The TDA8543(T) is a one channel audio power amplifier for an output power of 2 W with an 8 Ω load at a 7.5 V supply. The circuit contains a BTL amplifier with a complementary PNP-NPN output stage and standby/mute logic. The TDA8543T comes in a 16 pin SO package and the TDA8543 in a 16 pin DIP package.

APPLICATIONS

- Portable consumer products
- Personal computers
- Telephony.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>supply voltage</td>
<td></td>
<td>2.2</td>
<td>5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>I_{q}</td>
<td>quiescent current</td>
<td>V_{CC} = 5 V</td>
<td>–</td>
<td>8</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>I_{STB}</td>
<td>standby current</td>
<td></td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>P_{O}</td>
<td>output power</td>
<td>THD = 10%</td>
<td>1</td>
<td>1.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{L} = 8 Ω; V_{CC} = 5 V</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{L} = 16 Ω; V_{CC} = 9 V</td>
<td>–</td>
<td>2.0</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
<td>P_{O} = 0.5 W</td>
<td>–</td>
<td>0.15</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>SVRR</td>
<td>supply voltage ripple rejection</td>
<td></td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDA8543T</td>
<td>SO16</td>
<td>plastic small outline package; 16 leads; body width 3.9 mm</td>
<td>SOT109-1</td>
</tr>
<tr>
<td>TDA8543</td>
<td>DIP16</td>
<td>plastic dual in-line package; 16 leads (300 mil); long body</td>
<td>SOT38-1</td>
</tr>
</tbody>
</table>
2 W BTL audio amplifier

TDA8543

BLOCK DIAGRAM

![Block Diagram](image)

PINNING

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.c.</td>
<td>1</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>2</td>
<td>not connected</td>
</tr>
<tr>
<td>MODE</td>
<td>3</td>
<td>operating mode select (standby, mute, operating)</td>
</tr>
<tr>
<td>SVR</td>
<td>4</td>
<td>half supply voltage, decoupling ripple rejection</td>
</tr>
<tr>
<td>IN+</td>
<td>5</td>
<td>positive input</td>
</tr>
<tr>
<td>IN−</td>
<td>6</td>
<td>negative input</td>
</tr>
<tr>
<td>n.c.</td>
<td>7</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>8</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>9</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>10</td>
<td>not connected</td>
</tr>
<tr>
<td>OUT−</td>
<td>11</td>
<td>negative loudspeaker terminal</td>
</tr>
<tr>
<td>V CC</td>
<td>12</td>
<td>supply voltage</td>
</tr>
<tr>
<td>GND</td>
<td>13</td>
<td>ground</td>
</tr>
<tr>
<td>OUT+</td>
<td>14</td>
<td>positive loudspeaker terminal</td>
</tr>
<tr>
<td>n.c.</td>
<td>15</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>16</td>
<td>not connected</td>
</tr>
</tbody>
</table>

![Pin Configuration](image)

Fig.1 Block diagram.

Fig.2 Pin configuration.
FUNCTIONAL DESCRIPTION
The TDA8543(T) is a BTL audio power amplifier capable of delivering an output power between 1 and 2 W, depending on supply voltage, load resistance and package. Using the MODE pin the device can be switched to standby and mute condition. The device is protected by an internal thermal shutdown protection mechanism.

The gain can be set within a range from 6 dB to 30 dB by external feedback resistors.

Power amplifier
The power amplifier is a Bridge Tied Load (BTL) amplifier with a complementary PNP-NPN output stage.

The voltage loss on the positive supply line is the saturation voltage of a PNP power transistor, on the negative side the saturation voltage of an NPN power transistor.

Mode select pin
The device is in standby mode (with a very low current consumption) if the voltage at the MODE pin is \((V_{CC} - 0.5 \text{ V}) \), or if this pin is floating. At a MODE voltage level of less than 0.5 V the amplifier is fully operational.

In the range between 1.5 V and \(V_{CC} - 1.5 \text{ V} \) the amplifier is in mute condition. The mute condition is useful to suppress plop noise at the output, caused by charging of the input capacitor.

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>supply voltage</td>
<td>operating</td>
<td>-0.3</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>(V_I)</td>
<td>input voltage</td>
<td>-0.3</td>
<td>(V_{CC} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{ORM})</td>
<td>repetitive peak output current</td>
<td>–</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(T_{slg})</td>
<td>storage temperature</td>
<td>non-operating</td>
<td>-55</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{amb})</td>
<td>operating ambient temperature</td>
<td>–</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{psc})</td>
<td>AC and DC short-circuit safe voltage</td>
<td>–</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(P_{tot})</td>
<td>total power dissipation</td>
<td>SO16</td>
<td>–</td>
<td>1.2</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIP16</td>
<td>–</td>
<td>2.2</td>
<td>W</td>
</tr>
</tbody>
</table>

QUALITY SPECIFICATION
In accordance with “SNW-FQ-611-E”. The number of the quality specification can be found in the “Quality Reference Handbook”. The handbook can be ordered using the code 9397 750 00192.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th j-a})</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>100</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td>TDA8543T (SO16)</td>
<td></td>
<td>55</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td>TDA8543 (DIP16)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 W BTL audio amplifier

Table 1

<table>
<thead>
<tr>
<th>(V_{CC}) (V)</th>
<th>(R_L) (Ω)</th>
<th>(P_o) (W)(1)</th>
<th>CONTINUOUS SINE WAVE DRIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_{\text{max}}) (W)</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>7.5</td>
<td>8</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>7.5</td>
<td>16</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>1.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note

1. At THD = 10%; BTL.

Fig. 3 Power derating curve.
2 W BTL audio amplifier

DC CHARACTERISTICS

$V_{CC} = 5 \text{ V}; T_{amb} = 25 \degree \text{C}; R_L = 8 \Omega; V_{MODE} = 0 \text{ V}; G = 20 \text{ dB};$ measured in test circuit Fig.4; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>supply voltage</td>
<td>operating</td>
<td>2.2</td>
<td>5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>I_q</td>
<td>quiescent current</td>
<td>$R_L = \infty$; note 1</td>
<td>–</td>
<td>8</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>I_{stb}</td>
<td>standby current</td>
<td>$V_{MODE} = V_{CC}$</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>V_O</td>
<td>DC output voltage</td>
<td>note 2</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>$</td>
<td>V_{OUT+} - V_{OUT-}</td>
<td>$</td>
<td>differential output voltage offset</td>
<td>–</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>I_{IN+}, I_{IN-}</td>
<td>input bias current</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>V_{MODE}</td>
<td>input voltage mode select</td>
<td>operating</td>
<td>0</td>
<td>–</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mute</td>
<td>1.5</td>
<td>–</td>
<td>$V_{CC} - 1.5$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>standby</td>
<td>$V_{CC} - 0.5$</td>
<td>–</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{MODE}</td>
<td>input current mode select</td>
<td>$0 < V_{MODE} < V_{CC}$</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>μA</td>
</tr>
</tbody>
</table>

Notes

1. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output offset voltage divided by R_L.
2. The DC output voltage with respect to ground is approximately $0.5 \times V_{CC}$.

AC CHARACTERISTICS

$V_{CC} = 5 \text{ V}; T_{amb} = 25 \degree \text{C}; R_L = 8 \Omega; f = 1 \text{ kHz}; V_{MODE} = 0 \text{ V}; G = 20 \text{ dB};$ measured in test circuit Fig.4; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_o</td>
<td>output power</td>
<td>$\text{THD} = 10%$</td>
<td>$V_{CC} = 5 \text{ V}; R_L = 8 \Omega$</td>
<td>1</td>
<td>1.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} = 7.5 \text{ V}; R_L = 8 \Omega$</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} = 9 \text{ V}; R_L = 16 \Omega$</td>
<td>–</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{THD} = 0.5%$</td>
<td>$V_{CC} = 5 \text{ V}; R_L = 8 \Omega$</td>
<td>0.6</td>
<td>0.9</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} = 7.5 \text{ V}; R_L = 8 \Omega$</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} = 9 \text{ V}; R_L = 16 \Omega$</td>
<td>–</td>
<td>1.4</td>
<td>–</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
<td>$P_o = 0.5 \text{ W}$</td>
<td>–</td>
<td>0.15</td>
<td>0.3</td>
<td>%</td>
</tr>
<tr>
<td>G_v</td>
<td>closed loop voltage gain</td>
<td>note 1</td>
<td>6</td>
<td>–</td>
<td>30</td>
<td>dB</td>
</tr>
<tr>
<td>Z_i</td>
<td>differential input impedance</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>V_{no}</td>
<td>noise output voltage</td>
<td>note 2</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>μV</td>
</tr>
<tr>
<td>SVRR</td>
<td>supply voltage ripple rejection</td>
<td>note 3</td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>note 4</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>V_o</td>
<td>output voltage in mute condition</td>
<td>note 5</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>μV</td>
</tr>
</tbody>
</table>

1997 Jun 12

6
Notes to the AC characteristics

1. Gain of the amplifier is \(2 \times \frac{R_2}{R_1}\) in test circuit of Fig.4.
2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance of \(R_S = 0\ \Omega\) at the input.
3. Supply voltage ripple rejection is measured at the output, with a source impedance of \(R_S = 0\ \Omega\) at the input.
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.
4. Supply voltage ripple rejection is measured at the output, with a source impedance of \(R_S = 0\ \Omega\) at the input.
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.
5. Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, so including noise.

TEST AND APPLICATION INFORMATION

Test conditions
Because the application can be either Bridge Tied Load (BTL) or Single-Ended (SE), the curves of each application are shown separately.
The thermal resistance = 55 K/W for the DIP16 envelope; the maximum sine wave power dissipation for \(T_{amb} = 25\ ^\circ C\) is:
\[
\frac{150 - 25}{55} = 2.27\ W
\]
For \(T_{amb} = 60\ ^\circ C\) the maximum total power dissipation is:
\[
\frac{150 - 60}{55} = 1.63\ W
\]
See the power derating curve illustrated in Fig.3.

BTL application
\(T_{amb} = 25\ ^\circ C\) if not specially mentioned, \(V_{CC} = 5\ V\),
f = 1 kHz, \(R_L = 8\ \Omega\), \(G_v = 20\ dB\), audio band-pass 22 Hz to 22 kHz.
The BTL application diagram is shown in Fig.4.
The quiescent current has been measured without any load impedance. The total harmonic distortion as a function of frequency was measured with a low-pass filter of 80 kHz. The value of capacitor C2 influences the behaviour of the SVRR at low frequencies, increasing the value of C2 increases the performance of the SVRR.
The figure of the mode select voltage (\(V_{ms}\)) as a function of the supply voltage shows three areas; operating, mute and standby. It shows, that the DC-switching levels of the mute and standby respectively depends on the supply voltage level.

SE application
\(T_{amb} = 25\ ^\circ C\) if not specially mentioned, \(V_{CC} = 7.5\ V\),
f = 1 kHz, \(R_L = 4\ \Omega\), \(G_v = 20\ dB\), audio band-pass 22 Hz to 22 kHz.
The SE application diagram is shown in Fig.14.
The capacitor value of C3 in combination with the load impedance determines the low frequency behaviour. The total harmonic distortion as a function of frequency was measured with low-pass filter of 80 kHz. The value of capacitor C2 influences the behaviour of the SVRR at low frequencies, increasing the value of C2 increases the performance of the SVRR.

General remark
The frequency characteristic can be adapted by connecting a small capacitor across the feedback resistor. To improve the immunity of HF radiation in radio circuit applications, a small capacitor can be connected in parallel with the feedback resistor; this creates a low-pass filter.
BTL APPLICATION

Gain = \(2 \times \frac{R_2}{R_1} \)

Fig. 4 BTL application.

Fig. 5 \(I_q \) as a function of \(V_{CC} \).

\(R_L = \infty \).

Fig. 6 THD as a function of \(P_o \).

\(f = 1 \text{ kHz}, G_v = 20 \text{ dB} \).

(1) \(V_{CC} = 5 \text{ V}, R_L = 8 \Omega \).

(2) \(V_{CC} = 7.5 \text{ V}, R_L = 8 \Omega \).

(3) \(V_{CC} = 9 \text{ V}, R_L = 16 \Omega \).
2 W BTL audio amplifier

Philips Semiconductors
Product specification

TDA8543

Fig. 7 THD as a function of frequency.

![Graph showing THD as a function of frequency.](image1)

- $P_o = 0.5\, W$, $G_v = 20\, \text{dB}$.
- (1) $V_{CC} = 5\, V$, $R_L = 8\, \Omega$.
- (2) $V_{CC} = 7.5\, V$, $R_L = 8\, \Omega$.
- (3) $V_{CC} = 9\, V$, $R_L = 16\, \Omega$.

Fig. 8 SVRR as a function of frequency.

![Graph showing SVRR as a function of frequency.](image2)

- $V_{CC} = 5\, V$, $8\, \Omega$, $R_s = 0\, \Omega$, $V_r = 100\, \text{mV}$.
- (1) $G_v = 30\, \text{dB}$.
- (2) $G_v = 20\, \text{dB}$.
- (3) $G_v = 6\, \text{dB}$.

Fig. 9 P_o as a function of V_{CC}.

![Graph showing P_o as a function of V_{CC}.](image3)

- THD = 10%.
- (1) $R_L = 8\, \Omega$.
- (2) $R_L = 16\, \Omega$.
- (3) $R_L = 25\, \Omega$.

Fig. 10 Worst case power dissipation as a function of V_{CC}.

![Graph showing worst case power dissipation as a function of V_{CC}.](image4)

- (1) $R_L = 8\, \Omega$.
- (2) $R_L = 16\, \Omega$.
- (3) $R_L = 25\, \Omega$.

Philips Semiconductors

2 W BTL audio amplifier

Fig. 11 P as a function of \(P_0 \).

Sine wave of 1 kHz.

1. \(V_{CC} = 9 \, \text{V}, \, R_L = 16 \, \Omega \).
2. \(V_{CC} = 5 \, \text{V}, \, R_L = 8 \, \Omega \).
3. \(V_{CC} = 7.5 \, \text{V}, \, R_L = 8 \, \Omega \).

Fig. 12 \(V_o \) as a function of \(V_{ms} \).

Band-pass = 22 Hz to 22 kHz.

1. \(V_{CC} = 3 \, \text{V} \).
2. \(V_{CC} = 5 \, \text{V} \).
3. \(V_{CC} = 12 \, \text{V} \).

Fig. 13 \(V_{ms} \) as a function of \(V_P \).

1997 Jun 12
SE APPLICATION

Gain = \frac{R_2}{R_1}

Fig. 14 SE application.

Fig. 15 THD as a function of P_o.

- $f = 1$ kHz, $G_v = 20$ dB.
- (1) $V_{CC} = 7.5$ V, $R_L = 4$ Ω.
- (2) $V_{CC} = 9$ V, $R_L = 8$ Ω.
- (3) $V_{CC} = 12$ V, $R_L = 16$ Ω.

Fig. 16 THD as a function of frequency.

- $P_o = 0.5$ W, $G_v = 20$ dB.
- (1) $V_{CC} = 7.5$ V, $R_L = 4$ Ω.
- (2) $V_{CC} = 9$ V, $R_L = 8$ Ω.
- (3) $V_{CC} = 12$ V, $R_L = 16$ Ω.
2 W BTL audio amplifier

Fig.17 SVRR as a function of frequency.

V\(_{CC}\) = 7.5 V, \(R_L = 4 \Omega\), \(R_s = 0 \Omega\), \(V_i = 100\,\text{mV}\).

1. \(G_v = 24\,\text{dB}\).
2. \(G_v = 20\,\text{dB}\).
3. \(G_v = 0\,\text{dB}\).

Fig.18 \(P_o\) as a function of \(V_{CC}\).

1. THD = 10%, \(R_L = 4\,\Omega\).
2. THD = 10%, \(R_L = 8\,\Omega\).
3. THD = 10%, \(R_L = 16\,\Omega\).

Fig.19 Worst case power dissipation as a function of \(V_{CC}\).

1. \(R_L = 4\,\Omega\).
2. \(R_L = 8\,\Omega\).
3. \(R_L = 16\,\Omega\).

Fig.20 \(P\) as a function of \(P_o\).

1. \(V_{CC} = 7.5\,\text{V}\), \(R_L = 4\,\Omega\).
2. \(V_{CC} = 12\,\text{V}\), \(R_L = 16\,\Omega\).
3. \(V_{CC} = 9\,\text{V}\), \(R_L = 8\,\Omega\).
Philips Semiconductors Product specification

2 W BTL audio amplifier TDA8543

Fig.21 Printed-circuit board layout (BTL and SE).

a. Top view.

b. Component side.
2 W BTL audio amplifier TDA8543

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1 min.</th>
<th>A2 max.</th>
<th>b</th>
<th>b1</th>
<th>c</th>
<th>D (1)</th>
<th>E (1)</th>
<th>e</th>
<th>e1</th>
<th>L</th>
<th>M_E</th>
<th>M_H</th>
<th>w</th>
<th>z (1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>4.7</td>
<td>0.51</td>
<td>3.7</td>
<td>1.40</td>
<td>0.53</td>
<td>0.32</td>
<td>21.8</td>
<td>6.48</td>
<td>2.54</td>
<td>7.62</td>
<td>3.9</td>
<td>8.25</td>
<td>9.5</td>
<td>0.254</td>
<td>2.2</td>
</tr>
<tr>
<td>inches</td>
<td>0.19</td>
<td>0.020</td>
<td>0.15</td>
<td>0.055</td>
<td>0.045</td>
<td>0.015</td>
<td>0.86</td>
<td>0.26</td>
<td>0.10</td>
<td>0.30</td>
<td>0.15</td>
<td>0.32</td>
<td>0.37</td>
<td>0.01</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

<table>
<thead>
<tr>
<th>OUTLINE VERSION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEC</td>
</tr>
<tr>
<td>SOT38-1</td>
<td>050G09</td>
</tr>
</tbody>
</table>

1997 Jun 12 14
SO16: plastic small outline package; 16 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>bP</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>HE</th>
<th>L</th>
<th>Lp</th>
<th>Q</th>
<th>v</th>
<th>W</th>
<th>y</th>
<th>Z(1)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>10.0</td>
<td>9.8</td>
<td>4.0</td>
<td>3.8</td>
<td>1.27</td>
<td>6.2</td>
<td>5.8</td>
<td>1.05</td>
<td>0.7</td>
<td>0.6</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.004</td>
<td>0.019</td>
<td>0.014</td>
<td>0.010</td>
<td>0.0075</td>
<td>0.39</td>
<td>0.38</td>
<td>0.16</td>
<td>0.15</td>
<td>0.050</td>
<td>0.244</td>
<td>0.228</td>
<td>0.041</td>
<td>0.039</td>
<td>0.028</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
DEFINITIONS

<table>
<thead>
<tr>
<th>Data sheet status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
2 W BTL audio amplifier

NOTES
2 W BTL audio amplifier

NOTES
Philips Semiconductors – a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 1 01, Fax. +43 1 60 101 120
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220005 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoprogect, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Bulgaria
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, 51 James Bourchier Blvd., 1407 SOFIA, Bulgaria
China/Hong Kong: Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 40 99 6161, Fax. +45 10 99 6427
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +358 9 615800, Fax. +358 9 61580/xxx
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 645 0000, Fax. +353 1 649 1007
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Taewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Malaysia
Mexico: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 594
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kotbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Almendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPAI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 2092/2 Sarapavut-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/İSTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 209242 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 8BX, Tel. +44 181 730 5000, Fax. +44 181 754 842
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Yugoslavia
Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 547027/50/01/pp20 Date of release: 1997 Jun 12 Document order number: 9397 750 02232

Let's make things better.