DATA SHEET

TDA1010A
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Product specification
File under Integrated Circuits, IC01

November 1982
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed

The TDA1010A is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is primarily developed as a 6 W car radio amplifier for use with 4 Ω and 2 Ω load impedances. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W.

Special features are:
- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- low-cost external components
- good ripple rejection
- thermal protection

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage range</th>
<th>V_P</th>
<th>6 to 24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak output current</td>
<td>I_{ORM}</td>
<td>max. 3 A</td>
</tr>
<tr>
<td>Output power at pin 2; $d_{tot} = 10%$</td>
<td>P_0</td>
<td>typ. 6.4 W</td>
</tr>
<tr>
<td>$V_P = 14.4,\text{V}$; $R_L = 2,\Omega$</td>
<td>P_0</td>
<td>typ. 6.2 W</td>
</tr>
<tr>
<td>$V_P = 14.4,\text{V}$; $R_L = 4,\Omega$</td>
<td>P_0</td>
<td>typ. 3.4 W</td>
</tr>
<tr>
<td>$V_P = 14.4,\text{V}$; $R_L = 8,\Omega$</td>
<td>P_0</td>
<td>typ. 9 W</td>
</tr>
<tr>
<td>$V_P = 14.4,\text{V}$; $R_L = 2,\Omega$; with additional bootstrap resistor of 220 Ω between pins 3 and 4</td>
<td>d_{tot}</td>
<td>typ. 0.2 %</td>
</tr>
</tbody>
</table>

Total harmonic distortion at $P_0 = 1\,\text{W}$; $R_L = 4\,\Omega$

Input impedance
- preamplifier (pin 8) $|Z|_{\text{typ.}} = 30\,\text{kΩ}$
- power amplifier (pin 6) $|Z|_{\text{typ.}} = 20\,\text{kΩ}$

Total quiescent current at $V_P = 14.4\,\text{V}$ I_{tot} typ. 31 mA

Sensitivity for $P_0 = 5.8\,\text{W}$; $R_L = 4\,\Omega$
- V_i typ. 10 mV

Operating ambient temperature T_{amb} −25 to +150 °C

Storage temperature T_{stg} −55 to +150 °C

PACKAGE OUTLINE

9-lead SIL; plastic (SOT110B); SOT110-1; 1996 September 06.
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Fig. 1 Circuit diagram.
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage \(V_{P \max} \) 24 V
Peak output current \(I_{OM \max} \) 5 A
Repetitive peak output current \(I_{ORM \max} \) 3 A
Total power dissipation see derating curve Fig.2
Storage temperature \(T_{stg} \) 55 to +150 °C
Operating ambient temperature \(T_{amb} \) 25 to +150 °C
A.C. short-circuit duration of load during sine-wave drive; without heatsink at \(V_{P} = 14.4 \text{ V} \)

![Power derating curve](image)

Fig.2 Power derating curve.

HEATSINK DESIGN
Assume \(V_{P} = 14.4 \text{ V} \); \(R_{L} = 2 \text{ Ω} \); \(T_{amb} = 60 \degree \text{C} \) maximum; thermal shut-down starts at \(T_{j} = 150 \degree \text{C} \). The maximum sine-wave dissipation in a 2 Ω load is about 5.2 W. The maximum dissipation for music drive will be about 75% of the worst-case sine-wave dissipation, so this will be 3.9 W. Consequently, the total resistance from junction to ambient

\[
R_{th \ j-a} = R_{th \ j-tab} + R_{th \ tab-h} + R_{th \ h-a} = \frac{150 - 60}{3.9} = 23 \text{ K/W.}
\]

Since \(R_{th \ j-tab} = 10 \text{ K/W} \) and \(R_{th \ tab-h} = 1 \text{ K/W} \),
\(R_{th \ h-a} = 23 - (10 + 1) = 12 \text{ K/W.} \)
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

TDA1010A

D.C. CHARACTERISTICS

Supply voltage range
\(V_P \) 6 to 24 V

Repetitive peak output current
\(I_{ORM} \) < 3 A

Total quiescent current at \(V_P \) = 14,4 V
\(I_{T_{tot}} \) typ. 31 mA

A.C. CHARACTERISTICS

\(T_{amb} = 25 \, ^\circ\text{C} \); \(V_P = 14,4 \, V \); \(R_L = 4 \, \Omega \); \(f = 1 \, \text{kHz} \) unless otherwise specified; see also Fig.3.

A.F. output power (see Fig.4) at \(d_{tot} = 10\% \);
measured at pin 2; with bootstrap
\(V_P = 14,4 \, V \); \(R_L = 2 \, \Omega \) (note 1)
\(P_0 \) typ. 6,4 W

\(V_P = 14,4 \, V \); \(R_L = 4 \, \Omega \) (note 1 and 2)
\(P_0 \) typ. > 5,9 W

\(V_P = 14,4 \, V \); \(R_L = 8 \, \Omega \) (note 1)
\(P_0 \) typ. 3,4 W

\(V_P = 14,4 \, V \); \(R_L = 4 \, \Omega \); without bootstrap
\(P_0 \) typ. 5,7 W

\(V_P = 14,4 \, V \); \(R_L = 2 \, \Omega \); with additional bootstrap resistor of 220 \(\Omega \) between pins 3 and 4
\(P_0 \) typ. 9 W

Voltage gain

- preamplifier (note 3)
\(G_v1 \) typ. 24 dB

- power amplifier
\(G_v2 \) typ. 30 dB

- total amplifier
\(G_v_{tot} \) typ. 54 dB

Total harmonic distortion at \(P_0 = 1 \, W \)
\(d_{tot} \) typ. 0,2 %

Efficiency at \(P_0 = 6 \, W \)
\(\eta \) typ. 75 %

Frequency response (−3 dB)
\(B \) 80 Hz to 15 kHz

Input impedance

- preamplifier (note 4)
\(|Z_i| \) typ. 30 k\(\Omega \)

- power amplifier (note 5)
\(|Z_i| \) typ. 20 k\(\Omega \)

Output impedance of preamplifier; pin 7 (note 5)
\(|Z_o| \) typ. 20 k\(\Omega \)

Output voltage preamplifier (r.m.s. value)
\(d_{tot} < 1\% \) (pin 7) (note 3)
\(V_{o(rms)} \) > 0,7 V

Noise output voltage (r.m.s. value; note 6)
\(R_S = 0 \, \Omega \)
\(V_{n(rms)} \) typ. 0,3 mV

\(R_S = 8,2 \, k\Omega \)
\(V_{n(rms)} \) typ. 0,7 mV

Ripple rejection at \(f = 1 \, \text{kHz} \) to 10 kHz (note 7)
\(RR > 42 \, \text{dB} \)

at \(f = 100 \, \text{Hz} \); \(C2 = 1 \, \mu\text{F} \)
\(RR > 37 \, \text{dB} \)

Sensitivity for \(P_o = 5,8 \, W \)
\(V_i \) typ. 10 mV

Bootstrap current at onset of clipping; pin 4 (r.m.s. value)
\(I_{4(rms)} \) typ. 30 mA

November 1982
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications
TDA1010A

Notes
1. Measured with an ideal coupling capacitor to the speaker load.
2. Up to $P_o \leq 3 \text{ W}$: $d_{tot} \leq 1\%$.
3. Measured with a load impedance of $20 \text{ k}\Omega$.
5. Output impedance of preamplifier ($|Z_o|$) is correlated (within 10%) with the input impedance ($|Z_i|$) of the power amplifier.
6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
7. Ripple rejection measured with a source impedance between 0 and $2 \text{ k}\Omega$ (maximum ripple amplitude: 2 V).
8. The tab must be electrically floating or connected to the substrate (pin 9).

Fig.3 Test circuit.
Fig. 4 Output power of the circuit of Fig. 3 as a function of the supply voltage with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $R_L = 2 \, \Omega$ (1) has been measured with an additional $220 \, \Omega$ bootstrap resistor between pins 3 and 4. Measurements were made at $f = 1 \, \text{kHz}$, $d_{\text{tot}} = 10\%$, $T_{\text{amb}} = 25 \, ^\circ\text{C}$.

Fig. 5 See next page.
Total harmonic distortion in the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $R_L = 2 \, \Omega$ (1) has been measured with an additional $220 \, \Omega$ bootstrap resistor between pins 3 and 4. Measurements were made at $f = 1 \, \text{kHz}$, $V_P = 14.4 \, \text{V}$.
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Fig.5 For caption see preceding page.

Fig.6 Frequency characteristics of the circuit of Fig.3 for three values of load impedance; typical values.
P_0 relative to 0 dB = 1 W; $V_P = 14.4$ V.
Fig. 7 Total power dissipation (solid lines) and the efficiency (dashed lines) of the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter (for $R_L = 2 \, \Omega$ an external bootstrap resistor of 220 Ω has been used); typical values. $V_P = 14.4 \, V$; $f = 1 \, kHz$.
Fig. 8 Thermal resistance from heatsink to ambient of a 1.5 mm thick bright aluminium heatsink as a function of the single-sided area of the heatsink with the total power dissipation as a parameter.
APPLICATION INFORMATION

Fig. 9 Complete mono audio amplifier of a car radio.

November 1982
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Fig.10 Track side of printed-circuit board used for the circuit of Fig.9; p.c. board dimensions 92 mm x 52 mm.

Fig.11 Component side of printed-circuit board showing component layout used for the circuit of Fig.9.
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Fig. 12: Complete stereo car radio amplifier.
6 W audio power amplifier in car applications
10 W audio power amplifier in mains-fed applications

Fig.13 Track side of printed-circuit board used for the circuit of Fig.12; p.c. board dimensions 83 mm × 65 mm.
Fig.14 Component side of printed-circuit board showing component layout used for the circuit of Fig.12. Balance control is not on the p.c. board.
Fig. 15 Channel separation of the circuit of Fig. 12 as a function of the frequency.

Fig. 16 Power supply of circuit of Fig. 17.
6 W audio power amplifier in car applications

10 W audio power amplifier in mains-fed applications

TDA1010A

Fig. 17 Complete mains-fed ceramic stereo pick-up amplifier; for power supply see Fig. 16.
Fig. 18 Track side of printed-circuit board used for the circuit of Fig. 17 (Fig. 16 partly); p.c. board dimensions 169 mm × 118 mm.
Fig. 19 Component side of printed-circuit board showing component layout used for the circuit of Fig. 17 (Fig. 16 partly).
Fig. 20 Channel separation of the circuit of Fig. 18 as a function of frequency.
PACKAGE OUTLINE

SIL9MPF: plastic single in-line medium power package with fin; 9 leads

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>A₂ max.</th>
<th>A₃</th>
<th>A₄</th>
<th>b₁</th>
<th>b₂</th>
<th>c</th>
<th>D⁽¹⁾</th>
<th>D₁</th>
<th>E⁽¹⁾</th>
<th>e</th>
<th>L</th>
<th>P</th>
<th>P₁</th>
<th>Q</th>
<th>q₁</th>
<th>q₂</th>
<th>w</th>
<th>z⁽¹⁾ max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>18.5</td>
<td>3.7</td>
<td>8.7</td>
<td>8.0</td>
<td>15.8</td>
<td>15.4</td>
<td>1.14</td>
<td>1.40</td>
<td>1.40</td>
<td>0.50</td>
<td>0.67</td>
<td>1.40</td>
<td>0.38</td>
<td>21.8</td>
<td>21.4</td>
<td>20.7</td>
<td>6.48</td>
<td>6.20</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
SOLDERING

Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave
The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

Repairing soldered joints
Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.