TBA520
PAL TV CHROMA DEMODULATOR
FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION — The TBA520 is a synchronous demodulator for direct drive of color video output stages. It is constructed on a single silicon chip using the Fairchild Planar® epitaxial process. The TBA520 is designed for use in color television receivers, operating on the Phase Alternate Line (PAL) system. This circuit consists of two synchronous demodulators, a decoding matrix and a PAL switch with internal multivibrator.

- DOUBLE BALANCED SYNCHRONOUS DEMODULATOR
- INTERNAL DECODING MATRIX
- INTERNAL PAL SWITCH
- PROVISION FOR OUTPUT DC LEVEL MATCHING

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation
Voltage on Identification Input
Current into Identification Input
Operating Temperature Range
Storage Temperature Range
Pin Temperature (Soldering, 10 s)

1. Not recommended for new design.

ORDER INFORMATION
TYPE PART NO.
520 TBA520
(520 Q) (TBA520 Q)

CONNECTION DIAGRAM
16-PIN DIP
(TOP VIEW)
PACKAGE OUTLINE 9B

IDENTIFICATION
GND
R Y REF IN
LINE PULSE IN
PAL SWITCH OUT
R Y OUT
G Y OUT
V I
B Y OUT
B Y REF IN
TEST POINT

EQUIVALENT CIRCUIT

*Planar is a patented Fairchild process.
ELECTRICAL CHARACTERISTICS: $T_A = 25^\circ C$, $V_A = 12V$, See Test Circuit, unless otherwise specified.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current (I$_G$)</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Color Difference Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Y Channel</td>
<td>$V_{g} = V_{13} = 50$ mV$_{pk-pk}$, $f = 4.4$ MHz</td>
<td>7.0</td>
<td>12.5</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>B-Y Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-Y Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Color Difference Output Voltage</td>
<td>(Notes 2,3)</td>
<td></td>
<td>3.2</td>
<td>V$_{pk-pk}$</td>
<td></td>
</tr>
<tr>
<td>R-Y Output (V_4)</td>
<td></td>
<td></td>
<td>4.0</td>
<td>V$_{pk-pk}$</td>
<td></td>
</tr>
<tr>
<td>B-Y Output (V_7)</td>
<td></td>
<td></td>
<td>1.8</td>
<td>V$_{pk-pk}$</td>
<td></td>
</tr>
<tr>
<td>G-Y Output (V_8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Difference dc Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Y Output (V_4)</td>
<td></td>
<td>7.9</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>B-Y Output (V_7)</td>
<td></td>
<td>7.9</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>G-Y Output (V_8)</td>
<td></td>
<td>7.9</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Resistance of Chroma Inputs (R9, R13)</td>
<td>$V_g = V_{13} = 20$ mV$_{rms}$ (Sinusoidal)</td>
<td>800</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input Capacitance of Chroma Inputs (C9, C13)</td>
<td>$f = 4.4$ MHz</td>
<td></td>
<td>10</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Resistance at Color Difference Terminals (R4, R5, R7)</td>
<td></td>
<td>2.7</td>
<td></td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Input Resistance of Reference Inputs (R2, R8)</td>
<td></td>
<td>1.0</td>
<td></td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Peak-to-Peak PAL Switch Output Voltage</td>
<td>(Note 4)</td>
<td></td>
<td>2.5</td>
<td>V$_{pk-pk}$</td>
<td></td>
</tr>
<tr>
<td>Activation Threshold Voltage (V_1)</td>
<td>Identification Circuit is Active</td>
<td>0.75</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Activation Threshold Current (I_1)</td>
<td>Identification Circuit is Inactive</td>
<td>80</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Deactivation Threshold Voltage (V_1)</td>
<td>Identification Circuit is Inactive</td>
<td>0.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. G-Y output is typically equal to -0.51 (R-Y) -0.19 (B-Y).
2. Gain is equal to 0.7 of small signal gain.
3. Reference input (V_{2pk-pk} and V_{1pk-pk}) range is 0.5 V to 2.0 V.
4. $I_{out} = 0.5 \times$ line pulse frequency; $V_{14} = V_{15} = 0.5$ V to -2.5 V (peak).

TEST CIRCUIT

![Test Circuit Diagram](image-url)
APPLICATION INFORMATION

1. Identification bias
 The input current required to stop the flip-flop, "Ident on": Ion > 80 µA. For "Ident off": Voff = -5.0 to +0.4 V.

2. R-Y subcarrier reference input
 An 1.0 V peak-to-peak signal is required via a dc blocking capacitor. Under no circumstances should this signal be less than 0.5 V peak-to-peak. The input resistance at this pin is typically 1 kΩ.

3. PAL square wave output
 The amplitude is 2.5 V peak-to-peak from an emitter follower.

4. R-Y signal output (G-Y at pin 5 and B-Y at pin 7)
 No external dc load needed except that direct connection must be made via the low pass filter to the R G B matrix of the TBA530.
 The signals produced are in the following ratios:
 \[V_{G-Y} = 1.3 V_{R-Y} \]
 \[V_{G-Y} = 0.76 V_{R-Y} \]
 \[V_{G-Y} = 0.26 V_{R-Y} \]
 Condition (a) refers to (B-Y) + (R-Y) addition in the G-Y matrix. Condition (b) refers to the phase reversed (R-Y) input signal where (G-Y) is obtained by subtraction.

 The dc levels should each be adjusted, starting with the (B-Y) to +7.5 V at nominal supply voltage.

 The maximum peak-to-peak voltages for the condition \(m > 0.7 \) (m = ratio of minimum to maximum differential gains) are:
 \[V_{R-Y}(pk-pk) = 3.2 \text{ V} \]
 \[V_{G-Y}(pk-pk) = 1.8 \text{ V} \]
 \[V_{B-Y}(pk-pk) = 4.0 \text{ V} \]

 The output impedance for each signal is 2.7 kΩ.

 The drifts in dc levels of the color difference output signals for a change in ambient temperature of 40°C (after equilibrium is reached from switch-on) are typically:
 - Absolute shift: -50 to +50 mV
 - VR,Y relative to VB,Y: -20 to +20 mV
 - VG,Y relative to VB,Y: -20 to +20 mV
 - VR,Y relative to VG,Y: -20 to +20 mV

 The changes in dc level with supply voltage are approximately linear and track together.

 The -3.0 dB bandwidth of the color difference signals is 1.5 MHz.

5. G-Y signal output (see pin 4)

6. Positive supply
 Also dc level setting for B-Y output (pin 7). The maximum allowable voltage on this pin is 13.2 V. The minimum supply voltage to insure setting the B-Y output dc level correctly (+7.5 VI is 11.6 V in such case RG would be set to zero).

7. B-Y signal output (see pin 4)

8. B-Y subcarrier reference input
 The requirements here are identical with those for pin 2.

9. Chrominance B-Y input signal
 An input signal up to 360 mV peak-to-peak (color bars) is advisable. For driving the TBA530 an input signal of 160 mV is required.

10. Internally connected
 No external connection should be made.

11. DC level setting for G-Y output signal (circuit diagram on page 2).

12. DC level setting for R-Y output (see circuit diagram on page 2).

13. Chrominance R-Y input signal
 An input signal up to 500 mV peak-to-peak (color bars) is advisable. The input impedance is the same as for pin 9.

14. Line pulse input (flip-flop synchronizing)
 A 4.0 V peak negative going line flyback pulse should be applied via separate 10 nF capacitors to pins 14 and 15. Pulse amplitude to lie between 3.0 V and 4.5 V peak-to-peak.

15. Line pulse input (see pin 14).

![Block Diagram](image-url)