RF Communications

Table 1. RF Front End ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>IIP3 (dBm)</th>
<th>P1dB (dBm)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>IIP3 (dBm)</th>
<th>P1dB (dBm)</th>
<th>VCC (V)</th>
<th>ICC (mA)</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC13142</td>
<td>17</td>
<td>1.8</td>
<td>–5.0</td>
<td>–15</td>
<td>±3.0</td>
<td>12</td>
<td>–3 to +21</td>
<td>3.0</td>
<td>Yes</td>
<td>2.7 to 6.5</td>
<td>13 D/751B, FTB/976</td>
</tr>
<tr>
<td>MC13143</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>±3.0</td>
<td>12</td>
<td>–3 to +21</td>
<td>3.0</td>
<td>–</td>
<td>1.8 to 6.5</td>
<td>1.0 D/751</td>
</tr>
<tr>
<td>MC13144</td>
<td>13 to 19</td>
<td>1.4</td>
<td>–1.0</td>
<td>–7.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.8 to 6.5</td>
<td>2 to 9 D/751</td>
</tr>
<tr>
<td>MC13145</td>
<td>14</td>
<td>1.8</td>
<td>–5.0</td>
<td>–8.0</td>
<td>0</td>
<td>13</td>
<td>9.0</td>
<td>–1.0</td>
<td>Yes</td>
<td>2.7 to 6.5</td>
<td>30 FTA/932</td>
</tr>
</tbody>
</table>

Transmitter

<table>
<thead>
<tr>
<th>Device</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>IIP3 (dBm)</th>
<th>P1dB (dBm)</th>
<th>VCC (V)</th>
<th>ICC (mA)</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC13146</td>
<td>15</td>
<td>–</td>
<td>8.0</td>
<td>15</td>
<td>–</td>
<td>10</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTES: All devices operate over a wide range of RF input and IF frequencies, from dc to 2.0 GHz. Typical performance shown at 900 MHz.

Table 2. Wideband (FM/FSK) IFs

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>Sensitivity (Typ)</th>
<th>IF</th>
<th>Mute</th>
<th>RSSI</th>
<th>Max Data Rate</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC13055</td>
<td>3–12 V</td>
<td>25 mA</td>
<td>20 µV</td>
<td>40 MHz</td>
<td>✓</td>
<td>✓</td>
<td>2.0 Mb</td>
<td>Wideband Data IF, includes data shaper</td>
<td>P/648, D/751B</td>
</tr>
<tr>
<td>MC13155</td>
<td>3–6 V</td>
<td>7.0 mA</td>
<td>100 µV</td>
<td>250 MHz</td>
<td>–</td>
<td>–</td>
<td>10 Mb</td>
<td>Video Speed FM IF</td>
<td>D/751B</td>
</tr>
</tbody>
</table>

Table 3. Wideband Single Conversion Receivers – VHF

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>Sensitivity (Typ)</th>
<th>RF Input</th>
<th>IF</th>
<th>Mute</th>
<th>RSSI</th>
<th>Max Data Rate</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3356</td>
<td>3–9 V</td>
<td>25 mA</td>
<td>30 µV</td>
<td>200 MHz</td>
<td>10.7 MHz</td>
<td>✓</td>
<td>✓</td>
<td>500 kb</td>
<td>Includes front end mixer/L.O.</td>
<td>P/738, DW/751D</td>
</tr>
<tr>
<td>MC13156</td>
<td>2–6 V</td>
<td>5.0 mA</td>
<td>2.0 µV</td>
<td>500 MHz</td>
<td>21.4 MHz</td>
<td>–</td>
<td></td>
<td></td>
<td>CT–2 FM/Demodulator</td>
<td>DW/751E, FB/873</td>
</tr>
<tr>
<td>MC13158</td>
<td>2–6 V</td>
<td>6.0 mA</td>
<td>>1.2 Mb</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FM IF/Demodulator with split IF for DECT</td>
</tr>
<tr>
<td>MC13159</td>
<td>2.7–5 V</td>
<td>5.5 mA</td>
<td>600 MHz</td>
<td>500 kb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FM IF for PHS</td>
</tr>
</tbody>
</table>
RF Communications (continued)

Table 4. Narrowband Single Conversion Receivers – VHF

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>RF Input</th>
<th>IF</th>
<th>Mute</th>
<th>RSSI</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3357</td>
<td>4–8 V</td>
<td>5.0 mA</td>
<td>45 MHz</td>
<td>455 kHz</td>
<td>✓</td>
<td>–</td>
<td>>4.8 kb</td>
<td>Ceramic Quad Detector/Resonator</td>
</tr>
<tr>
<td>MC3359</td>
<td>4–9 V</td>
<td>7.0 mA</td>
<td>2.0 µV</td>
<td>455 kHz</td>
<td>✓</td>
<td>–</td>
<td>>4.8 kb</td>
<td>Scan output option</td>
</tr>
<tr>
<td>MC3371</td>
<td>2–8 V</td>
<td>6.0 mA</td>
<td>60 MHz</td>
<td></td>
<td>✓</td>
<td></td>
<td>RSSI</td>
<td></td>
</tr>
<tr>
<td>MC3372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RSSI, Ceramic Quad Detector/Resonator</td>
<td></td>
</tr>
<tr>
<td>MC13150</td>
<td>3–6 V</td>
<td>1.8 mA</td>
<td>1.0 µV</td>
<td>500 MHz</td>
<td>✓</td>
<td></td>
<td>>9.6 kb</td>
<td>Coilless Detector with Adjustable Bandwidth</td>
</tr>
</tbody>
</table>

Table 5. Narrowband Dual Conversion Receivers – FM/FSK – VHF

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>RF Input</th>
<th>IF1</th>
<th>IF2 (Limiter In)</th>
<th>Mute</th>
<th>RSSI</th>
<th>Data Rate</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3362</td>
<td>2–7 V</td>
<td>3.0 mA</td>
<td>180 MHz</td>
<td>10.7 MHz</td>
<td>455 kHz</td>
<td>–</td>
<td>✓</td>
<td>> 4.8 kb</td>
<td>Includes buffered VCO output</td>
<td>P/724, DW/751E</td>
</tr>
<tr>
<td>MC3363</td>
<td></td>
<td>4.0 mA</td>
<td>0.4 µV</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>Includes RF amp/mute</td>
<td>DW/751F</td>
<td></td>
</tr>
<tr>
<td>MC13135</td>
<td></td>
<td></td>
<td>1.0 µV</td>
<td></td>
<td></td>
<td></td>
<td>Voltage buffered RSSI, LC Quad Detector</td>
<td>DW/751E, P/724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC13136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Voltage Buffered RSSI, Ceramic Quad Detector</td>
<td>DW/751E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Universal Cordless Phone Subsystem ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>Dual Conversion Receiver</th>
<th>Universal Dual PLL</th>
<th>Companider and Audio Interface</th>
<th>Voice Scrambler</th>
<th>Low Battery Detect</th>
<th>Low Battery Detect</th>
<th>Programmable R<sub>x</sub>, T<sub>x</sub> Trim Gain and LBD Voltage Reference</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC13109</td>
<td>2.0–5.5 V</td>
<td>6.7 mA</td>
<td>Active Mode 6.7 mA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>FB/848B, FTA/932</td>
</tr>
<tr>
<td>MC13110</td>
<td>2.7–5.5 V</td>
<td>8.2 mA</td>
<td>Active Mode 8.2 mA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
<td>✓</td>
<td>FB/848B</td>
</tr>
<tr>
<td>MC13111</td>
<td>2.7–5.5 V</td>
<td>8.2 mA</td>
<td>Active Mode 8.2 mA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>2</td>
<td>✓</td>
<td>FB/848B</td>
</tr>
</tbody>
</table>
RF Communications (continued)

Table 7. Transmitters – AM/FM/FSK

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>Pout</th>
<th>Max RF Freq Out</th>
<th>Max Mod Freq</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC2833</td>
<td>3–8 V</td>
<td>10 mA</td>
<td>–30 dBm to +10 dBm</td>
<td>150 MHz</td>
<td>50 kHz</td>
<td>FM transmitter. Includes two frequency multiplier/amplifier transistors</td>
<td>P/648, D/751B</td>
</tr>
<tr>
<td>MC13175</td>
<td>2–5 V</td>
<td>40 mA</td>
<td>8.0 dBm</td>
<td>500 MHz</td>
<td>5.0 MHz</td>
<td>AM/FM transmitter. Single frequency PLL (f_{out} = 32 \times f_{ref}), includes power down function</td>
<td>D/751B</td>
</tr>
<tr>
<td>MC13176</td>
<td></td>
<td></td>
<td>1.0 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Balanced Modulator/Demodulator

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>Function</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1496</td>
<td>3–5 V</td>
<td>10 mA</td>
<td>General purpose balanced modulator/demodulator for AM, SSB, FM detection with Carrier Balance >50 dB</td>
<td>P/646, D/751A</td>
</tr>
</tbody>
</table>

Table 9. Infrared Transceiver

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC</th>
<th>ICC</th>
<th>12 dB SINAD Sensitivity (Typ)</th>
<th>Max IF Freq</th>
<th>Carr Det</th>
<th>RSSI</th>
<th>Data Rate</th>
<th>Notes</th>
<th>Suffix/Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC13173</td>
<td>3–5 V</td>
<td>6.5 mA</td>
<td>5.0 µV</td>
<td>10.7 MHz</td>
<td>✓</td>
<td>✓</td>
<td>200 kb</td>
<td>Includes Single Frequency PLL for (T_x) Carrier and (R_x) LO</td>
<td>FTB/873</td>
</tr>
</tbody>
</table>
Universal Cordless Telephone Subsystem IC
MC13109FB, FTA

$T_A = -20^\circ \text{C to } +85^\circ \text{C, Case 848B, 932}$

The MC13109 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- **Dual Conversion FM Receiver**
 - Complete Dual Conversion Receiver – Antenna Input to Audio Output 80 MHz Maximum Carrier Frequency
 - RSSI Output
 - Carrier Detect Output with Programmable Threshold
 - Comparator for Data Recovery
 - Operates with Either a Quad Coil or Ceramic Discriminator

- **Comander**
 - Expander Includes Mute, Digital Volume Control and Speaker Driver
 - Compressor Includes Mute, ALC and Limiter

- **Dual Universal Programmable PLL**
 - Supports New 25 Channel U.S. Standard with No External Switches
 - Universal Design for Domestic and Foreign CT–1 Standards
 - Digitally Controlled Via a Serial Interface Port
 - Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit Programmable Counter and 2nd LO with 12–Bit Counter
 - Transmit Section Contains Phase Detector and 14–Bit Counter
 - MPU Clock Output Eliminates Need for MPU Crystal

- **Supply Voltage Monitor**
 - Externally Adjustable Trip Point
- 2.0 to 5.5 V Operation with One–Third the Power Consumption of Competing Devices

![Block Diagram of MC13109FB, FTA](image)

R x In

1st Mixer

2nd Mixer

Limiting IF Amplifier

Detector

Mute Expander

1st LO PLL

2nd LO PLL

RSSI

μP Serial Interface

Low Battery Indicator

Rx Out

Data Out

SPI

Low Battery Detect

T x In

T x Out

T x VCO

Carrier Detect

Mute Compressor

T x Phase Detector
Universal Cordless Telephone Subsystem IC with Scrambler

MC13110FB

\(T_A = -40^\circ \text{ to } +85^\circ \text{C}, \text{ Case 848B} \)

The MC13110 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- **Dual Conversion FM Receiver**
 - Complete Dual Conversion Receiver – Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
 - RSSI Output
 - Carrier Detect Output with Programmable Threshold
 - Comparator for Data Recovery
 - Operates with Either a Quad Coil or Ceramic Discriminator

- **Compander**
 - Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
 - Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block

- **Dual Universal Programmable PLL**
 - Supports New 25 Channel U.S. Standard with New External Switches
 - Universal Design for Domestic and Foreign CT–1 Standards
 - Digitally Controlled Via a Serial Interface Port
 - Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit Programmable Counter and 2nd LO with 12–Bit Counter
 - Transmit Section Contains Phase Detector and 14–Bit Counter
 - MPU Clock Outputs Eliminates Need for MPU Crystal

- **Supply Voltage Monitor**
 - Provides Two Levels of Monitoring with Separate Outputs
 - Separate, Adjustable Trip Points

- **Frequency Inversion Scrambler/Descrambler**
 - Can Be Enabled/Disabled Via MPU Interface
 - Programmable Carrier Modulation Frequency

- **2.7 to 5.5 V Operation with One–Third the Power Consumption of Competing Devices**
Universal Cordless Telephone Subsystem IC with Scrambler (continued)

MC13111FB

\[T_A = -40^\circ \text{C} \text{ to } +85^\circ \text{C}, \text{ Case 848B, 932} \]

The MC13111 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, external adjustments, and lowers overall costs. It is designed for use in both the handset and the base.

- **Dual Conversion FM Receiver**
 - Complete Dual Conversion Receiver – Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
 - RSSI Output
 - Carrier Detect Output with Programmable Threshold
 - Comparator for Data Recovery
 - Operates with Either a Quad Coil or Ceramic Discriminator

- **Compander**
 - Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
 - Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block

- **Dual Universal Programmable PLL**
 - Supports New 25 Channel U.S. Standard with No External Switches
 - Universal Design for Domestic and Foreign CT–1 Standards
 - Digitally Controlled Via a Serial Interface Port
 - Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit Programmable Counter and 2nd LO with 12–Bit Counter
 - Transmit Section Contains Phase Detector and 14–Bit Counter
 - MPU Clock Outputs Eliminates Need for MPU Crystal

- **Supply Voltage Monitor**
 - Provides Two Levels of Monitoring with Separate Outputs
 - Separate, Adjustable Trip Points

- **Programmable Corner Frequency Selection**

- **MC13111 is Pin–for–Pin Compatible with MC13110**

- **2.7 to 5.5 V Operation with One–Third the Power Consumption of Competing Devices**

- **AN1575: Refer to this Application Note for a List of the “Worldwide Cordless Telephone Frequencies” (List can also be found in Chapter 8 Addendum of DL128 Data Book)**

![Diagram of Universal Cordless Telephone Subsystem IC with Scrambler](image-url)
Narrowband FM Receiver
MC13135P,DW, MC13136DW
T_A = –40° to +85°C, Case 724, 751E

The MC13135 is a full dual conversion receiver with oscillators, mixers, Limiting IF Amplifier, Quadrature Discriminator, and RSSI circuitry. It is designed for use in security systems, cordless phones, and VHF mobile and portable radios. Its wide operating supply voltage range and low current make it ideal for battery applications. The Received Signal Strength Indicator (RSSI) has 65 dB of dynamic range with a voltage output, and an operational amplifier is included for a dc buffered output. Also, an improved mixer third order intercept enables the MC13135 to accommodate larger input signal levels.
- Complete Dual Conversion Circuitry
- Low Voltage: 2.0 to 6.0 Vdc
- RSSI with Op Amp: 65 dB Range
- Low Drain Current: 3.5 mA Typical
- Improved First and Second Mixer 3rd Order Intercept
- Detector Output Impedance: 25 Ω Typically
Narrowband FM Coilless Detector IF Subsystem

MC13150FTA, FTB

\[T_A = -40^\circ \text{ to } +85^\circ \text{C, Case 977, 873} \]

The MC13150 is a narrowband FM IF subsystem targeted at cellular and other analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola’s MOSAIC 1.5™ RF bipolar process. The MC13150 has an onboard Colpitts VCO for Crystal controlled second LO in dual conversion receivers. The mixer is a double balanced configuration with excellent third order intercept. It is useful to beyond 200 MHz. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. The quadrature detector is a unique design eliminating the conventional tunable quadrature coil. Applications for the MC13150 include cellular, CT–1 900 MHz cordless telephone, data links and other radio systems utilizing narrowband FM modulation.

- Linear Coilless Detector
- Adjustable Demodulator Bandwidth
- 2.5 to 6.0 Vdc Operation
- Low Drain Current: < 2.0 mA
- Typical Sensitivity of 2.0 \(\mu \text{V} \) for 12 dB SINAD
- IIP3, Input Third Order Intercept Point of 0 dBm
- RSSI Range of Greater Than 100 dB
- Internal 1.4 k\(\Omega \) Terminations for 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range
Wideband FM IF System
MC13156DW, FB

$T_A = -40^\circ$ to $+85^\circ$C, Case 751E, 873

The MC13156 is a wideband FM IF subsystem targeted at high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13156 has an onboard Colpitts VCO for PLL controlled multichannel operation. The mixer is useful to beyond 200 MHz and may be used in a differential, balanced, or single–ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has a hold function to preset the shaper for fast recovery of new data.

Applications for the MC13156 include CT–2, wideband data links, and other radio systems utilizing GMSK, FSK or FM modulation.

- 2.0 to 6.0 Vdc Operation
- Typical Sensitivity of 6.0 μV for 12 dB SINAD
- RSSI Dynamic Range Typically 80 dB
- High Performance Data Shaper for Enhanced CT–2 Operation
- Internal 300 Ω and 1.4 kΩ Terminations for 10.7 MHz and 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range
Wideband FM IF Subsystem

MC13158FTB

$T_A = -40^\circ$ to $+85^\circ$C, Case 873

The MC13158 is a wideband IF subsystem that is designed for high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through the use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13158 has an on–board grounded collector VCO transistor that may be used with a fundamental or overtone crystal in single channel operation or with a PLL in multi–channel operation. The mixer is useful to 500 MHz and may be used in a balanced differential or single ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has an Off function to shut the output “off” to save current. An enable control is provided to power down the IC for power management in battery operated applications.

Applications include DECT, wideband wireless data links for personal and portable laptop computers and other battery operated radio systems which utilize GFSK, FSK or FM modulation.

- Designed for DECT Applications
- 1.8 to 6.0 Vdc Operating Voltage
- Low Power Consumption in Active and Standby Mode
- Greater than 600 kHz Detector Bandwidth
- Data Slicer with Special Off Function
- Enable Function for Power Down of Battery Operated Systems
- RSSI Dynamic Range of 80 dB Minimum
- Low External Component Count
UHF, FM/AM Transmitter

MC13175/176D

$T_A = 0^\circ$ to $+70^\circ$C, Case 751B

The MC13175 and MC13176 are one chip FM/AM transmitter subsystems designed for AM/FM communication systems operating in the 260 to 470 MHz band covered by FCC Title 47; Part 15. They include a Colpitts crystal reference oscillator, UHF oscillator, $\div 8$ (MC13175) or $\div 32$ (MC13176) prescaler, and phase detector forming a versatile PLL system.

Another application is as a local oscillator in a UHF or 900 MHz receiver. MC13175/176 offer the following features:

- Low Number of External Parts Required
- Low Operating Supply Voltage (1.8–5 Vdc)
- Low Supply Drain Currents
- Power Output Adjustable (Up to +10 dBm)
- Differential Output for Loop Antenna or Balun Transformer Networks
- Power Down Feature
- ASK Modulated by Switching Output “On”/“Off”
- MC13175 – $f_0 = 8 \times f_{\text{ref}}$
- MC13176 – $f_0 = 32 \times f_{\text{ref}}$
Telecommunications

Subscriber Loop Interface Circuit (SLIC)

MC33121P, FN

\[T_A = -40^\circ \text{ to } +85^\circ \text{C}, \text{ Case 738, 776} \]

With a guaranteed minimum longitudinal balance of 58 dB, the MC33121 is ideally suited for Central Office applications, as well as PBXs, and other related equipment. Protection and sensing components on the two-wire side can be non-precision while achieving required system performance. Most BORSHT functions are provided while maintaining low power consumption, and a cost effective design. Size and weight reduction over conventional transformer designs permit a higher density system.

- All Key Parameters Externally Programmable with Resistors:
 - Transmit and Receive Gains
 - Transhybrid Loss

- Return Loss
- DC Loop Current Limit and Battery Feed Resistance
- Longitudinal Impedance
- Single and Double Fault Sensing and Protection
- Minimum 58 dB Longitudinal Balance (2-wire and 4-wire) Guaranteed
- Digital Hook Status and Fault Outputs
- Power Down Input
- Loop Start or Ground Start Operation
- Size & Weight Reduction Over Conventional Approaches
- Available in 20 Pin DIP and 28 Pin PLCC Packages
- Battery Voltage: –42 to –58 V (for MC33120), –21.6 to –42 V (for MC33121)

![Diagram of SLIC MC33121](image-url)
PBX Architecture (Analog Transmission)

PCM Monocircuits Codec–Filters (CMOS LSI)

MC145500 Series
Case 648, 708, 751G, 776

The Monocircuits perform the digitizing and restoration of the analog signals. In addition to these important functions, Motorola’s family of pulse–code modulation monocircuits also provides the band–limiting filter functions – all on a single monolithic CMOS chip with extremely low power dissipation.

The Monocircuits require no external components. They incorporate the bandpass filter required for antialiasing and 60 Hz rejection, the A/D–D/A conversion functions for either U.S. Mu–Law or European A–Law companding formats, the low–pass filter required for reconstruction smoothing, an on–board precision voltage reference, and a variety of options that lend flexibility to circuit implementations. Unique features of Motorola’s monocircuit family include wide power supply range (6.0 to 13 V), selectable on–board voltage reference (2.5, 3.1, or 3.8 V), and TTL or CMOS I/O interface.

Motorola supplies three versions in this series. The MC145503 and MC145505 are general–purpose devices in 16 pin packages designed to operate in digital telephone or line card applications. The MC145502 is the full–feature device that presents all of the options available on the chip. This device is packaged in a 22 pin DIP and 28 pin chip carrier package.

MC145554/57/64/67
Case 648, 751D, 751G, 738

These per channel PCM Codec–Filters perform the voice digitization and reconstruction as well as the band limiting and smoothing required for PCM systems. They are designed to operate in both synchronous and asynchronous applications and contain an on–chip precision voltage reference. The MC145554 (Mu–Law) and MC145557 (A–Law) are general purpose devices that are offered in 16 pin packages. The MC145564 (Mu–Law) and MC145567 (A–Law), offered in 20 pin packages, add the capability of analog loop–back and push–pull power amplifiers with adjustable gain.

All four devices include the transmit bandpass and receive lowpass filters on–chip, as well as active RC pre–filtering and post–filtering. Fully differential analog circuit design assures lowest noise. Performance is specified over the extended temperature range of –40° to +85°C.

These PCM Codec–Filters accept both industry standard clock formats. They also maintain compatibility with Motorola’s family of MC3419/MC33120 SLIC products.

MC14LC5480 Series

All devices in the MC14LC5480 series (including MC14LC5480, MC145481, MC145482, MC145483 and MC145484) are general purpose per channel PCM Codec–Filters. The MC14LC5480, MC145481 and MC145484 are pin–selectable Mu–Law or A–Law companding. The MC145482 and MC145483 are 13–bit linear PCM Codec–Filters. These devices offered in 20–pin DIP, SOIC, and SSOP packages. These devices perform the voice digitization and reconstruction as well as the band limiting and smoothing required for PCM systems. These devices are designed to operate in both synchronous and asynchronous applications and contain an on–chip precision reference voltage.

These devices have an input operational amplifier whose output is the input to the encoder sections. The encoder section immediately low–pass filters the analog signal with an active R–C filter to eliminate very high frequency noise from being modulated down to the passband by the switched capacitor filter. From the active R–C filter, the analog signal is converted to a differential signal.

From this point, all analog signal processing is done differentially. This allows processing of an analog signal that is twice the amplitude allowed by the single–ended design, which reduces the significance of noise to both the inverted and non–inverted signal paths. Another advantage of the differential design is that noise injected via the power supplies is a common–mode signal that is canceled when the inverted and non–inverted signals are recombined. This dramatically improves the power supply rejection ratio.

The MC14LC5480EVK is the primary tool for evaluation and demonstration of the MC14LC5480 series.
PBX Architecture (continued)

MC14LC5480DW, SD
Case 751D, 940C–02
This 5.0 V PCM Codec–Filter offers the following features:
• Single 5.0 V Power Supply
• Typical Power Dissipation of 15 mW, Power–Down of 0.01 mW
• Fully–Differential Analog Circuit Design for Lowest Noise
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip
• Active R–C Pre–Filtering and Post–Filtering
• Mu–Law and A–Law Companding by Pin Selection
• On–Chip Precision Reference Voltage (1.575 V)
• Push–Pull 300 Ω Power Drivers with External Gain Adjust

MC145481DW, SD
Case 751D, 940C–02
This 3.0 V PCM Codec–Filter offers the following features:
• Single 2.7 V to 5.25 V Power Supply
• Typical Power Dissipation of 8.0 mW at 3.0 V, Power–Down of 0.01 mW
• Fully–Differential Analog Circuit Design for Lowest Noise
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip
• Active R–C Pre–Filtering and Post–Filtering
• Mu–Law and A–Law Companding by Pin Selection
• On–Chip Precision Reference Voltage of 0.886 V for a –5.0 dBm TLP at 600 Ω
• Push–Pull 300 Ω Power Drivers with External Gain Adjust

MC145482DW, SD
Case 751D, 940C–02
This 5.0 V 13–bit linear PCM Codec–Filter offers the following features:
• Single 5.0 V Power Supply
• 13–Bit Linear ADC/DAC Conversions with 2s Complement Data Format
• Typical Power Dissipation of 25 mW, Power–Down of 0.01 mW
• Fully–Differential Analog Circuit Design for Lowest Noise
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip
• Trasmit High–Pass Filter May be Bypassed by Pin Selection
• Active R–C Pre–Filtering and Post–Filtering
• On–Chip Precision Reference Voltage of 1.575 V for a 0 dBm TLP at 600 Ω
• 3–Terminal Input Op Amp Can Be Used, or a 2–Channel Input Multiplexer
• Receive Gain Control from 0 to –21 dB in 3.0 dB Steps in Synchronous Operation
• Push–Pull 300 Ω Power Drivers with External Gain Adjust

The MC145483 is ideal as a DSP front end. In fact, the MC145483 is used in the evaluation platform for Motorola's DSP56L811. The MC145483 makes the DSP56L811EVM evaluation platform ideal for developing and implementing many messaging and audio processing algorithms.

MC145483DW, SD
Case 751D, 940C–02
This 3.0 V 13–bit linear PCM Codec–Filter offers the following features:
• Single 3.0 V Power Supply
• 13–Bit Linear ADC/DAC Conversions with 2s Complement Data Format
• Typical Power Dissipation of 8.0 mW, Power–Down of 0.01 mW
• Fully–Differential Analog Circuit Design for Lowest Noise
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip
• Trasmit High–Pass Filter May be Bypassed by Pin Selection
• Active R–C Pre–Filtering and Post–Filtering
• On–Chip Precision Reference Voltage of 0.886 V for a –5.0 dBm TLP at 600 Ω
• 3–Terminal Input Op Amp Can Be Used, or a 2–Channel Input Multiplexer
• Receive Gain Control from 0 to –21 dB in 3.0 dB Steps in Synchronous Operation
• Push–Pull 300 Ω Power Drivers with External Gain Adjust

MC145484DW, SD
Case 751D, 940C–02
This 5.0 V PCM Codec–Filter offers the following features:
• Single 5.0 V Power Supply
• Typical Power Dissipation of 15 mW, Power–Down of 0.01 mW
• Fully–Differential Analog Circuit Design for Lowest Noise
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip
• Active R–C Pre–Filtering and Post–Filtering
• On–Chip Precision Reference Voltage of 1.575 V for a 0 dBm TLP at 600 Ω
• Push–Pull 300 Ω Power Drivers with External Gain Adjust
The MC14LC5540 ADPCM Codec is a single chip implementation of a PCM Codec–Filter and an ADPCM encoder/decoder, and therefore provides an efficient solution for applications requiring the digitization and compression of voiceband signals. This device is designed to operate over a wide voltage range, 2.7 V to 5.25 V, and as such is ideal for battery powered as well as ac powered applications. The MC14LC5540 ADPCM Codec also includes a serial control port and internal control and status registers that permit a microcomputer to exercise many built-in features.

The ADPCM Codec is designed to meet the 32 kbps ADPCM conformance requirements of CCITT Recommendation G.721 (1988) and ANSI T1.301 (1987). It also meets ANSI T1.303 and CCITT Recommendation G.723 for 24 kbps ADPCM operation, and the 16 kbps ADPCM standard, CCITT Recommendation G.726. This device also meets the PCM conformance specification of the CCITT G.714 Recommendation.
The MC143416 Dual 16–Bit Linear Codec–Filter is a single–chip implementation of the data conversion interface required to design high–speed modems meeting a wide range of standards such as ITU–T V.34 and PCM modem. It includes two high performance Analog–to–Digital (A/D) and Digital–to–Analog (D/A) data converters. The device performs all filtering operations related to the conditioning and sample rate conversion of signals to and from the data interface. Output from both codecs (COder/DECoder) is in 16–bit 2s complement format.

The MC143416 includes the necessary logic needed to generate all clocks (oversampling, intermediate frequency, and baud rate) required to perform the data processing operations involved in the oversampling conversion of voice and data signals. Sample rates are programmable, including 8000, 9600, 11025, 12000, and 16000 samples/second when provided with a 28.224 MHz external timing reference.

The MC143416 includes two Synchronous Serial Interfaces (SSIs) through which an external Digital Signal Processor (DSP) can configure and monitor the operation of the device. Digital sample data is transferred to and from the codecs through the serial ports. In addition, information can be written and read to the control and status registers of the device via the serial port, transparent to the flow of sample data. When used in a high speed modem application, the MC143416 provides the analog front end interface required to support modem and voice features.

MC143416 Features:

- Single 5.0 V ± 5% Power Supply
- Fully–Differential Analog Circuit Design for Lowest Noise
- Two High Performance Sigma–Delta A/D and D/A Converters
- Band–Pass and Low–Pass Filtering for Both Codecs is Performed On–Chip
- Power Monitor Circuit
- Two Configurable Serial Ports
- On–Chip Precision Reference Voltage
- On–Chip Speaker Driver and Mixer with Programmable Gain — Capable of Delivering 15 mW of Power into a Small Speaker (32 Ω)

Figure 2. MC143416 Block Diagram
PBX Architecture (continued)

MC145537EVK
ADPCM Codec Evaluation Kit

The MC145537EVK is the primary tool for evaluation and demonstration of the MC14LC5540 ADPCM Codec. It provides the necessary hardware and software interface to access the many features and operational modes of the MC14LC5540 ADPCM Codec.
- Provides Stand Alone Evaluation on Single Board
- The kit provides Analog–to–Analog, Analog–to–Digital or Digital–to–Analog Connections – with Digital Connections being 64 kbps PCM, 32 or 24 kbps ADPCM, or 16 kbps CCITT G.726 or Motorola Proprietary ADPCM
- +5.0 V Only Power Supply, or 5.0 V Plus 2.7 to 5.25 V Supply
- Easily Interfaced to Test Equipment, Customer System, Second MC145537EVK or MC145536EVK (5.0 V Only) for Full Duplex Operation
- Convenient Access to Key Signals
- Piezo Loudspeaker
- EIA–232 Serial Computer Terminal Interface for Control of the MC14LC5540 ADPCM Codec Features
- Compatible Handset Provided
- Schematics, Data Sheets, and User’s Manual Included

Figure 3. MC145537EVK Block Diagram
PBX Architecture (continued)

MC14LC5480EVK
PCM Codec–Filter Evaluation Kit

The MC14LC5480EVK is the primary tool for evaluation and demonstration of the following PCM and linear codec–filters.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VCC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC14LC5480</td>
<td>5.0 V</td>
<td>Mu/A–Law Companding</td>
</tr>
<tr>
<td>MC145481</td>
<td>3.0 V</td>
<td>Mu/A–Law Companding</td>
</tr>
<tr>
<td>MC145482</td>
<td>5.0 V</td>
<td>13–Bit Linear</td>
</tr>
<tr>
<td>MC145483</td>
<td>3.0 V</td>
<td>13–Bit Linear</td>
</tr>
<tr>
<td>MC145484</td>
<td>5.0 V</td>
<td>Mu/A–Law Companding</td>
</tr>
</tbody>
</table>

Table 2. Mu/A–Law and Linear PCM Codec–Filters

Figure 4 is a functional block diagram of the MC14LC5480EVK. The MC14LC5480EVK is comprised of two functional blocks — the clocking circuitry, and one of the PCM Codec–Filters listed in Table 2.

Figure 4.MC14LC5480EVK Functional Block Diagram

Dual Tone Multiple Frequency Receiver
MC145436AP, DW

Case 646, 751G

This device contains the filter and decoder for detection of a pair of tones conforming to the DTMF standard with outputs in hexadecimal. Switched capacitor filter technology is used together with digital circuitry for the timing control and output circuits. The MC145436A provides excellent power–line noise and dial tone rejection.

Replaces MC145436P, DW.

ISDN Voice/Data Circuits

Integrated Services Digital Network

ISDN is the revolutionary concept of converting the present analog telephone networks to an end–to–end global digital network. ISDN standards make possible a wide variety of services and capabilities that are revolutionizing communications in virtually every industry.

Motorola’s ISDN product family includes the MC14LC5472 and MC145572 U–Interface Transceivers, the MC145474/75 and MC145574 S/T–Interface Transceivers, MC145488 Dual Data Link Controller, and the MC68302 Integrated Multi–Protocol Processor. These are supported by a host of related devices including the MC14LC5480 +5.0 V PCM Codec–Filter, MC145532 ADPCM Transcoder, MC14LC5540 ADPCM Codec, MC145500 family of single–chip codec/filters, MC145436A DTMF Decoder, MC33120 Subscriber Loop Interface Circuit, MC34129 Switching Power Supply Controller, and the MC145406/07 CMOS EIA 232–E Driver/Receiver family.

Motorola’s key ISDN devices fit into four ISDN network applications: a digital subscriber line card, an NT1 network termination, an ISDN terminal adapter, and an ISDN terminal. Digital subscriber line cards are used in central offices, remote concentrators, channel banks, T1 multiplexers, and other switching equipment. The NT1 network termination block illustrates the simplicity of remote U–to S/T–interface conversion. The ISDN terminal adapter and ISDN terminal block show how Motorola ICs are used to combine voice and data in PC compatible boards, digital telephones, and other terminal equipment. Expanded applications such as a PBX may include these and other Motorola ISDN circuits. Many “non–ISDN” uses, such as pairgain applications, are appropriate for Motorola’s ISDN devices as well.
Second Generation
U–Interface Transceivers

MC145572PB
Case 824D

MC145572FN
Case 777

The MC145572 fully conforms to ANSI T1.601–1992, the North American standard for ISDN Basic Access on a single twisted–wire pair. The transceiver achieves a remarkable 10–7 bit error rate performance on all ANSI specified test loops with worst–case impairments present. The state–of–the–art 0.65 micron single–chip solution uses advanced design techniques to combine precision analog signal processing elements with three digital signal coprocessors to build an adaptively equalized echo cancelling receiver.

Two modes of handling U–interface maintenance functions are provided on the MC145572. In the automatic maintenance mode the U–interface transceiver handles all ANSI specified maintenance and channel procedures internally to minimize your software development effort. Automatic procedures include generating and monitoring the cyclic redundancy check, reporting and counting far end block errors (near end block errors too), handling the ACT and DEA bits, as well as monitoring and appropriately responding to embedded operations channel messages.

The MC145572 has 275 mW maximum power dissipation. It also has an enhanced TDM interface that supports an on–chip timeslot assigner, GCI and IDL modes of operation.

The optional manual maintenance mode lets you choose an inexpensive microcontroller, such as a member of Motorola's MC68HC05 family, to control and augment the standard maintenance channel functions. This flexible feature also allows for easy implementation of proprietary maintenance functions.

Second Generation
S/T–Interface Transceivers

MC145574PB
Case 873A

MC145574DW
Case 751F

The MC145574 S/T–Interface Transceivers provide a CCITT I.430 compatible interface for use in line card, network termination, and ISDN terminal equipment applications. Manufactured with Motorola's advanced 0.65 micron CMOS mixed analog and digital process technology, the MC145574 is a physical layer device capable of operating in point–to–point or point–to–multipoint passive bus arrangements. In addition, the MC145574 implements the optional NT1 Star topology, NT terminal mode and TE slave mode.

This device features outstanding transmission performance. It reliably transmits over 1 kilometer in a point–to–point application. Comparable performance is achieved in all other topologies as well. Other features include pin selectable terminal or network operating modes, industry standard microprocessor serial control port, full support of the multiframeing S and Q channels, a full range of loopbacks, and low power CMOS operation, with a maximum power consumption of 90 mW.

The MC145574 has an enhanced TDM interface that supports GCI, IDL and an on–chip timeslot assigner.

Diagram:

- **TA**
 - MC145488
 - MPU System
 - MC145574
 - S/T Chip
 - DDLC
 - SCP
 - IDL
 - Codec
 - Host Bus
 - TE1
 - MC68302
 - Imp
 - SCP
 - IDL
 - Codec
 - RAM
 - ROM

- **NT1**
 - MC145574
 - S/T Chip
 - GCI
 - U Chip
 - MC145572
 - NT1 Chip
 - SCP
 - IDL
 - U

- **LT**
 - MC145572
 - IDL
 - SCP
 - U Chip

Central Office

SLIC Codec

RS232

MC33121

MC14LC5480

MC68302

MC145574

MC145572

Imp

UART
Dual Data Link Controller

MC145488FN

Case 779

The MC145488 features two full-duplex serial HDLC channels with an on-chip Direct Memory Access (DMA) controller. The DMA controller minimizes the number of microprocessor interrupts from the communications channels, freeing the microprocessor’s resources for other tasks. The DMA controller can access up to 64 kbytes of memory, and transfers either 8-bit bytes or 16-bit words to or from memory. The MC145488 DDLC is compatible with Motorola's MC68000 and other microprocessors.

In a typical ISDN terminal application, one DDLC communications channel supports the D-channel (LAPD) while the other supports the B-channel (LAPB). While the DDLC is ideally suited for ISDN applications, it can support many other HDLC protocol applications as well.

Some of the powerful extras found on the DDLC include automatic abort and retransmit of D-channel collisions in S/T-interface applications, address recognition, automatic recovery mechanisms for faulty frame correction, and several system test modes. Address recognition provides a reduction in the host microprocessor load by filtering data frames not addressed to the host. The DDLC can compare either SAPI or TEI fields of LAPD frames. For LAPD (Q.921) applications, both A and B addresses may be checked.

MC14LC5494EVK

U-Interface Transceiver Evaluation Kit discontinued

MC145572EVK

U-Interface Transceiver Evaluation Kit

This kit provides the hardware and software to evaluate the many configurations under which the MC145572EVK is able to operate. Used as a whole, it operates as both ends of the two-wire U interface that extends from the customer premises (NT1) to the switch line card (LT). The two halves of the board can be physically and functionally separated, providing independent NT1 and LT evaluation capability.

The kit provides the ability to interactively manipulate status registers in the MC145572EVK U-Interface transceiver or in the MC145474/75 S/T-Interface transceiver with the aid of an external terminal. The device can also be controlled using the MC68302 Integrated Multiprotocol Processor application development system to complete a total Basic Rate ISDN evaluation solution.
Voice/Data Communication (Digital Transmission)

2–Wire Universal Digital Loop Transceiver (UDLT)

MC145422P, DW Master Station
Case 708, 751E

MC145426P, DW Slave Station
Case 708, 751E

The UDLT family of transceivers allows the use of existing twisted–pair telephone lines (between conventional telephones and a PBX) for the transmission of digital data. With the UDLT, every voice–only telephone station in a PBX system can be upgraded to a digital telephone station that handles the complex voice/data communications with no increase in cabling costs.

In implementing a UDLT–based system the A/D to D/A conversion function associated with each telset is relocated from the PBX directly to the telset. The SLIC (or its equivalent circuit) is eliminated since its signaling information is transmitted digitally between two UDLTs.

The UDLT master–slave system incorporates the modulation/demodulation functions that permit data communications over a distance up to 2 kilometers. It also provides the sequence control that governs the exchange of information between master and slave. Specifically, the master resides on the PBX line card where it transmits and receives data over the wire pair to the telset. The slave is located in the telset and interfaces the monocircuit to the wire pair. Data transfer occurs in 10–bit bursts (8 bits of data and 2 signaling bits), with the master transmitting first, and the slave responding in a synchronized half–duplex transmission format.

UDLTs utilize a 256 kilobaud Modified Differential Phase Shift Keyed (MDPSK) burst modulation technique for transmission to minimize radio frequency, electromagnetic, and crosstalk interference. Implementation through CMOS technology takes advantage of low–power operation, increased reliability, and the proven capabilities to perform complex telecommunications functions.

Functional Features

- Provides Synchronous Duplex 64 kbits/Second Voice/Data Channel and Two 8 kbits/Second Signaling Data Channels Over One 26 AWG Wire Pair Up to 2 km.
- Compatible with Existing and Evolving Telephone Switch Architectures and Call Signaling Schemes
- Automatic Detection Threshold Adjustment for Optimum Performance Over Varying Signal Attenuations
- Protocol Independent
- Single 5.0 V to 8.0 V Power Supply

MC145422 Master UDLT
- 2.048 MHz Master Clock
- Pin Controlled Power–Down and Loop–Back Features
- Variable Data Clock – 64 khz to 2.56 MHz
- Pin Controlled Insertion/Extraction of 8 kbits/Seconds Channel into LSB of 64 kbits/Second Channel for Simultaneous Routing of Voice and Data Through PCM Voice Path of Telephone Switch

MC145426 Slave UDLT
- Compatible with MC145500 Series and Later PCM Codec–Filters
- Automatic Power–Up/Down Feature
- On–Chip Data Clock Recovery and Generation
- Pin Controlled 500 Hz D3 or CCITT Format PCM Tone Generator for Audible Feedback Applications
2–Wire ISDN Universal Digital Loop Transceiver II (UDLT II)

MC145421P, DW Master
Case 709, 751E

MC145425P, DW Slave
Case 709, 751E

Similar to the MC145422/26 UDLT, but provide synchronous full duplex 160 kbps voice and data communication in a 2B + 2D format for ISDN compatibility on a single twisted pair up to 1 km. Single 5.0 V power supply, protocol independent.
High-Speed Modem Chip Sets

The Motorola family of analog modem systems is a complete line of software upgradable modem solutions for a wide variety of PC, multimedia, and embedded applications. Each family member includes the basic data, fax, and voice modem features such as 33.6 kbps V.34 capability, as well as an expected upgrade to 56 kbps in 1997 and ITU-T v.pcm in 1998. When ordering these modems, all major integrated circuits and requisite software are included under one part number. Depending on the requirements of their system application, developers can choose between: MCK143450 – a self–contained DSP–based modem; and MCK143453 and MCK143454 – completely host–based modems. The ISA Passive ISDN+Modem series adds ISDN capability with host ISDN control software and Motorola ISDN transceivers.

The analog modem systems family also features reference design kits (RDKs) for rapid system implementation, and evaluation kits (EVKs) for more engineering intensive system and software development in conjunction with the Motorola modem software. Evaluation kits are intended to provide a system evaluation and software development platform to Motorola customers. Reference design kits are not intended for detailed system evaluation and software development. RDKs will: demonstrate lowest cost implementation, be certified for electrical emissions and electrical safety, and be homologated for target countries. RDKs also allow for customers to evaluate modem/fax and voice performance.

Analog Modem Systems Family Chip Sets and Software

<table>
<thead>
<tr>
<th>Series</th>
<th>Host Controller</th>
<th>Host Data Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCK143450</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MCK143453</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MCK143454</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series</th>
<th>DSP Controller</th>
<th>DSP Data Pump</th>
<th>ISDN–Capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCK143450</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MCK143453</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MCK143454</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

MCK143450

The Motorola MCK143450 is a complete analog modem chip set and software for retail and embedded modem applications. The MCK143450 DSP–based modem controller and data pump are upgradable via software download. This ensures that Motorola upgrades or improvements of modem software can rapidly be incorporated into any end product. The MCK143450’s modem and voice functions utilize a Motorola DSP56300 general purpose DSP core, allowing implementors to differentiate their product through customization of the basic Motorola modem chip set and software. The DSP56300 family is a 1X (one instruction per clock cycle) full 24–bit DSP architecture and is well suited for modem and audio DSP applications.

Included with the MCK143450 is Motorola’s complete suite of modem software. With the Motorola software, developers can rapidly incorporate an upgradable high performance communications solution into their system.

Two development kits are available for the MCK143450 External Active Modem Chip Set and Software: the MC143450EVK Evaluation Kit and the MC143450RDK Reference Design Kit. The MC143450EVK is targeted at DSP modem software developers, and the MC143450RDK is targeted at modem developers who want to use existing Motorola software and software upgrades.

The MC143450RDK is designed with minimum cost and rapid implementation in mind. It allows the developer to evaluate modem and voice feature performance and to perform a detailed system cost analysis. An evaluation software license is included along with schematics, complete Bill of Materials (BOM), layout recommendations, and Gerber files for PCB fabrication. The MC143450RDK is also designed to pass all electrical and safety certifications required by national certification bodies worldwide. This includes regulations such as FCC Part 68 and FCC Part 15 in the United States.

The MC14350EVK is designed with the DSP modem software developer in mind. It provides additional hardware that enables debugging of DSP software using the DSP’s OnCE® port or an external logic analyzer. A memory expansion mezzanine card provides additional memory and a logic analyzer port. A second mezzanine card carries the modem Data Access Arrangement (DAA) circuitry. This mezzanine card architecture allows developers to design their own DAA circuitry or add additional memory as needed. The MC143450EVK allows developers to perform the same performance analysis as the MC143450RDK.

Integrated Circuits Included
- MC143416 Dual 16–Bit Linear Codec–Filter*
- DSP56303 24–Bit Digital Signal Processor

Software Included
- Active Modem Controller and Data Pump Software

Features
- High Performance 24–Bit DSP
- High Quality Dual Integrated Codec

* Codec = COder/DECoder
High-Speed Modem Chip Sets (continued)

MCK143453, MCK143454

The Motorola MCK143453 and MCK143454 are complete Windows™-based ISDN+Modem chip sets and software for PC OEM communications solutions. The host–based ISDN and modem controllers, as well as the modem data pumps, are upgradable via software download. This ensures that Motorola revisions to modem or ISDN software can be rapidly incorporated into any end product. The MCK143453 and MCK143454’s modem and voice functions utilize a Motorola 56300 general purpose Digital Signal Processor (DSP) core, allowing implementors to differentiate their product through customization of the basic Motorola ISDN+Modem chip set and software. The DSP56300 family is a 1X (one instruction per clock cycle) full 24–bit DSP architecture and is well suited for modem and audio DSP applications.

The MCK143453 and MCK143454 incorporate Motorola’s ISDN Transceivers for U– or S/T–interface applications. These cost–effective devices are built using Motorola’s high performance mixed signal and embedded DSP technology.

Included with the MCK143453 and MCK143454 is Motorola’s complete suite of ISDN and modem software. With Motorola software, OEMs can rapidly incorporate an upgradable high performance communications solution into their PC platform.

In addition, Motorola provides the ISA Passive ISDN+Modem Evaluation Kit (MC143453EVK) to evaluate the Motorola solution and to explore different hardware configuration options. The options include ISDN U– or S/T–interfaces, an optional POTS interface for ISDN compatibility with existing analog phones or fax machine, and optional Data Access Arrangement (DAA) interfaces for international Public Switched Telephone Network (PSTN) certification. The flexible MC143453EVK uses network interface mezzanine cards to allow the implementor to explore these different options with ease and flexibility.

Integrated Circuits Included
- DSP56303 24–Bit Digital Signal Processor
- MC68SC302 ISDN Passive Controller
- MC145572 ISDN U–Interface Transceiver (MCK143453)
- MC145574 ISDN S/T–Interface Transceiver (MCK143454)
- MC14LC5480 Mu/A–Law PCM Codec–Filter* (Optional)
- MC143416 Dual 16–Bit Linear Codec–Filter (Optional)

Software Included
- ISDN+Modem Passive Controller and Data Pump Software

Features
- Controller–Less (Host–Based Controller) for Lowest Cost and Minimum Utilization of Host CPU Resources
- Operating System Support: Windows 95™ and Windows NT™
- NDIS/CAPI Drivers
- Voice Over ISDN and Modem Over ISDN
- High Performance 24–Bit DSP
- High Quality Dual Integrated Codec–Filter
- MC145572 U–Interface Transceiver Conforms to ANSI T1.601–1992
- MC145574 S/T–Interface Transceiver Conforms to ITU–T I.430, ANSI T1.605, and ETSI ETS 300012
Electronic Telephone

The Complete Electronic Telephone Circuit

MC34010P, FN

$T_A = -20^\circ \text{to} +60^\circ \text{C, Case 711, 777}$

The conventional transformer–driven telephone handset is undergoing major innovations. The bulky transformer is disappearing. So are many of its discrete components, including the familiar telephone bell. They are being replaced with integrated circuits that perform all the major handset functions simply, reliably and inexpensively . . . functions such as 2–to–4 wire conversion, DTMF dialing, tone ringing, and a variety of related activities.

The culmination of these capabilities is the Electronic Telephone Circuit, the MC34010. These ICs place all of the above mentioned functions on a single monolithic chip.

These telephone circuits utilize advanced bipolar analog (I^2L) technology and provide all the necessary elements of a modern tone–dialing telephone. The MC34010 even incorporates an MPU interface circuit for the inclusion of automatic dialing in the final system.

- Provides all basic telephone functions, including DTMF dialer, tone ringer, speech network and line voltage regulator.
- DTMF generator uses low cost ceramic resonator with accurate frequency synthesis technique
- Tone ringer drives piezoelectric transducer and satisfies EIA–470 requirements
- Speech network provides 2–to–4 wire conversion with adjustable sidetone utilizing an electret transmitter
- On–chip regulator insures stable operation over wide range of loop lengths
- I^2L technology provides low 1.4 V operation and high static discharge immunity
- Microprocessor interface port for automatic dialing features

Also Available

A broad line of additional telephone components for customizing systems design.

![Electronic Telephone Circuit Diagram](image-url)
Tone Ringers

The MC34017 Tone Ringer is designed to replace the bulky bell assembly of a telephone, while providing the same function and performance under a variety of conditions. The operational requirements spelled out by the FCC and EIA–470, simply stated, are that a ringer circuit MUST function when a ringing signal is provided, and MUST NOT ring when other signals (speech, dialing, noise) are on the line. The tone ringers described below were designed to meet those requirements with a minimum of external components.

MC34017P, D

$T_A = -20^\circ \text{C} \text{ to } +60^\circ \text{C, Case 626, 751}$

- Complete Telephone Bell Replacement Circuit with Minimum External Components
- On-Chip Diode Bridge and Transient Protection
- Direct Drive for Piezoelectric Transducers
- Push Pull Output Stage for Greater Output Power Capability
- Base Frequency Options
 - MC34017–1: 1.0 kHz
 - MC34017–2: 2.0 kHz
 - MC34017–3: 500 Hz
- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial Transients

MC34217P, D

$T_A = -20^\circ \text{C} \text{ to } +60^\circ \text{C, Case 626, 751}$

- Complete Telephone Bell Replacement
- On-Chip Diode Bridge
- Internal Transient Protection
- Differential Output to Piezo Transducer for Louder Sound
- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial and Hook Switch Transients
- Base Frequency and Warble Frequencies are Independently Adjustable
- Adjustable Base Frequency
- Reduced Number of Externals
Speech Networks

Telephone Speech Network with Dialer Interface

MC34114P, DW

$T_A = -20^\circ$ to $+70^\circ$C, Case 707, 751D

- Operation Down to 1.2 V
- Adjustable Transmit, Receive, and Sidetone Gains by External Resistors
- Differential Microphone Amplifier Input Minimizes RFI
- Transmit, Receive, and Sidetone Equalization on both Voice and DTMF Signals
- Regulated 1.7 V Output for Biasing Microphone
- Regulated 3.3 V Output for Powering External Dialer
- Microphone and Receive Amplifiers Muted During Dialing
- Differential Receive Amplifier Output Eliminates Coupling Capacitor
- Operates with Receiver Impedances of 150 Ω and Higher
Cordless Universal Telephone Interface

MC34016DW, P

\[T_A = -20^\circ \text{ to } +70^\circ \text{C}, \text{ Case 751D, 738} \]

The MC34016 is a telephone line interface meant for use in cordless telephone base stations for CT0, CT1, CT2 and DECT. The circuit forms the interface towards the telephone line and performs all speech and line interface functions like dc and ac line termination, 2–4 wire conversion, automatic gain control and hookswitch control. Adjustment of transmission parameters is accomplished by two 8 bit registers accessible via the integrated serial bus interface and by external components.

- DC Masks for Voltage and Current Regulation
- Supports Passive or Active AC Set Impedance Applications
- Double Wheatstone Bridge Sidetone Architecture
- Symmetrical Inputs and Outputs with Large Signal Swing Capability
- Gain Setting and Mute Function for \(T_x \) and \(R_x \) Amplifiers
- Very Low Noise Performance
- Serial Bus Interface SPI Compatible
- Operation from 3.0 to 5.5 V

FEATURES

Line Driver Architecture
- Two DC Masks for Voltage Regulation
- Two DC Masks for Current Regulation
- Passive or Active Set Impedance Adjustment
- Double Wheatstone Bridge Architecture
- Automatic Gain Control Function

Transmit Channel
- Symmetrical Inputs Capable of Handling Large Voltage Swing
- Gain Select Option via Serial Bus Interface
- Transmit Mute Function, Programmable via Bus
- Large Voltage Swing Capability at the Telephone Line

Receive Channel
- Double Sidetone Architecture for Optimum Line Matching
- Symmetrical Outputs Capable of Producing High Voltage Swing
- Gain Select Option via Serial Bus Interface
- Receive Mute Function, Programmable via Serial Bus

Serial Bus Interface
- 3–Wire Connection to Microcontroller
- One Programmable Output Meant for Driving a Hookswitch
- Two Programmable Outputs Capable of Driving Low Ohmic Loads
- Two 8–Bit Registers for Parameter Adjustment

![Cordless Universal Telephone Interface Diagram](image-url)
Speech Networks (continued)

Programmable Telephone Line Interface
Circuit with Loudspeaker Amplifier

MC34216DW

$T_A = 0^\circ \text{ to } +70^\circ C$, Case 751F

The MC34216 is developed for use in telephone applications where besides the standard telephone functions also the group listening–in feature is required. In cooperation with a microcontroller, the circuit performs all basic telephone functions including DTMF generation and pulse–dialing. The listening–in part includes a loudspeaker amplifier, an anti–howling circuit and a strong supply. In combination with the TCA3385, the ringing is performed via the loudspeaker.

FEATURES

Line Driver and Supply
- DC and AC Termination of the Line
- Selectable Masks: France, U.K., Low Voltage
- Current Protection
- Adjustable Set Impedance for Resistive and Complex Termination
- Efficient Supply Point for Loudspeaker Amplifier and Peripherals

Handset Operation
- Transmit and Receive Amplifiers
- Adjustable Sidetone Network
- Line Length AGC
- Microphone and Earpiece Mute

Dialing and Ringing
- Earpiece Gain Increase Switch
- Microphone Squelch Function
- Transmit Amplifier Soft Clipping

Loudspeaking Facility
- Integrated Loudspeaker Amplifier
- Peak–to–Peak Limiter Prevents Distortion
- Programmable Volume
- Anti–Howling Circuitry for Group Listening–In
- Interfacing for Handsfree Conversation

Application Areas
- Corded Telephony with Group Listening–In
- Cordless Telephony Base Station with Group Listening–In
- Telephones with Answering Machines
- Fax, Intercom, Modem

![Block diagram of the MC34216DW programmable telephone line interface circuit with loudspeaker amplifier]
Speech Networks (continued)

Telephone Line Interface

TCA3388DP, FP
$T_A = 0^\circ$ to $+70^\circ$C, Case 738, 751D

The TCA3388 is a telephone line interface circuit which performs the basic functions of a telephone set in combination with a microcontroller and a ringer. It includes dc and ac line termination, the hybrid function with 2 adjustable sidetone networks, handset connections and an efficient supply point.

FEATURES

Line Driver and Supply
- DC and AC Termination of the Telephone Line
- Selectable DC Mask: France, U.K., Low Voltage
- Current Protection
- Adjustable Set Impedance for Resistive and Complex Termination
- EFFICIENT Supply Point for Peripherals
- Hook Status Detection

Handset Operation
- Transmit and Receive Amplifiers
- Double Anti–Sidetone Network
- Line Length AGC
- Microphone and Earpiece Mute
- Transmit Amplifier Soft Clipping

Dialing and Ringing
- Interrupter Driver for Pulse–Dialing
- Reduced Current Consumption During Pulse–Dialing
- DTMF Interfacing
- Ringing via External Ringer

Application Areas
- Corded Telephony
- Cordless Telephony Base Station
- Answering Machines
- Fax
- Intercom
- Modem
Speakerphones

Voice Switched Speakerphone Circuit

MC34018P, DW
\[T_A = -20^\circ \text{C} \text{ to } +60^\circ \text{C}, \text{ Case 710, 751F} \]

The MC34018 Speakerphone integrated circuit incorporates the necessary amplifiers, attenuators, and control functions to produce a high quality hands–free speakerphone system. Included are a microphone amplifier, a power audio amplifier for the speaker, transmit and receive attenuators, a monitoring system for background sound level, and an attenuation control system which responds to the relative transmit and receive levels as well as the background level. Also included are all necessary regulated voltages for both internal and external circuitry, allowing line–powered operation (no additional power supplies required). A Chip Select pin allows the chip to be powered down when not in use. A volume control function may be implemented with an external potentiometer. MC34018 applications include speakerphones for household and business uses, intercom systems, automotive telephones, and others.

- All Necessary Level Detection and Attenuation Controls for a Hands–Free Telephone in a Single Integrated Circuit
- Background Noise Level Monitoring with Long Time Constant
- Wide Operating Dynamic Range Through Signal Compression
- On–Chip Supply and Reference Voltage Regulation
- Typical 100 mW Output Power (into 25 \(\Omega \)) with Peak Limiting to Minimize Distortion
- Chip Select Pin for Active/Standby Operation
- Linear Volume Control Function
Speakerphones (continued)

Voice Switched Speakerphone Circuit

MC34118P, DW
$T_A = -20^\circ \text{ to } +60^\circ \text{C}, \text{ Case 710, 751F}$

The MC34118 Voice Switched Speakerphone circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands–free speakerphone system. Included are a microphone amplifier with adjustable gain and mute control, Transmit and Receive attenuators which operate in a complementary manner, level detectors at input and output of both attenuators, and background noise monitors for both the transmit and receive channels. A dial tone detector prevents the dial tone from being attenuated by the Receive background noise monitor circuit. Also included are two line driver amplifiers which can be used to form a hybrid network in conjunction with an external coupling transformer. A high–pass filter can be used to filter out 60 Hz noise in the receive channel, or for other filtering functions. A Chip Disable pin permits powering down the entire circuit to conserve power on long loops where loop current is at a minimum.

The MC34118 may be operated from a power supply, or it can be powered from the telephone line, requiring typically 5.0 mA. The MC34118 can be interfaced directly to Tip and Ring (through a coupling transformer) for stand–alone operation, or it can be used in conjunction with a handset speech network and/or other features of a featurephone.

• Improved Attenuator Gain Range: 52 dB Between Transmit and Receive
• Low Voltage Operation for Line–Powered Applications (3.0 to 6.5 V)
• 4–Point Signal Sensing for Improved Sensitivity
• Background Noise Monitors for Both Transmit and Receive Paths
• Microphone Amplifier Gain Set by External Resistors – Mute Function Included
• Chip Disable for Active/Standby Operation
• On Board Filter Pinned–Out for User Defined Function
• Dial Tone Detector Inhibits Receive Idle Mode During Dial Tone Presence
• Compatible with MC34119 Speaker Amplifier

![Circuit Diagram]
Speakerphones (continued)

Voice Switched Speakerphone with µProcessor Interface

MC33218AP, DW

$T_A = -40^\circ$ to $+85^\circ$C, Case 724, 751E

The MC33218A, Voice Switched Speakerphone circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands–free speakerphone system. Included are a microphone amplifier with adjustable gain, and mute control, transmit and receive attenuators which operate in a complementary manner, and level detectors and background noise monitors for both paths. A dial tone detector prevents dial tone from being attenuated by the receive background noise monitor. A Chip Disable pin permits powering down the entire circuit to conserve power.

Also included is an 8–bit serial µprocessor port for controlling the receive volume, microphone mute, attenuator gain, and operation mode (force to transmit, force to receive, etc.). Data rate can be up to 1.0 MHz. The MC33218A can be operated from a power supply, or from the telephone line, requiring typically 3.8 mA. It can also be used in intercoms and other voice–activated applications.

- Low Voltage Operation: 2.5 to 6.0 V
- 2–Point Sensing, Background Noise Monitor in Each Path
- Chip Disable Pin for Active/Standby Operation
- Microphone Amplifier Gain Set by External Resistors – Mute Function Included
- Dial Tone Detector to Inhibit Receive Idle Mode During Dial Tone Presence
- Microprocessor port for controlling:
 - Receive Volume Level (16 Steps)
 - Attenuator Range (26 or 52 dB, Selectable)
 - Microphone Mute
 - Force to Transmit, Receive, Idle or Normal Voice Switched Operation
- Compatible with MC34119 Speaker Amplifier
Voice Switched Speakerphone Circuit

MC33219AP, ADW

The MC33219A Voice Switched Speakerphone Circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands-free speakerphone system. Included are a microphone amplifier with adjustable gain, and mute control, transmit and receive attenuators which operate in a complementary manner, and level detectors and background noise monitors. A dial tone detector prevents dial tone from being attenuated by the receive background noise monitor. A Chip Disable pin permits powering down the entire circuit to conserve power.

The MC33219A may be operated from a power supply, or it can be powered from the telephone line requiring typically 4.0 mA. The MC33219A can be interfaced directly to Tip and Ring (through a coupling transformer for stand-alone operation, or it can be used in conjunction with a handset speech network and/or other features of a featurephone.

- Low Voltage Operation: 2.7 to 6.0 V
- 2-Point Sensing, Background Noise Monitor in Each Path
- Chip Disable Pin for Active/Standby Operation
- Microphone Amplifier Gain Set by External Resistors – Mute Function Included
- Dial Tone Detector to Inhibit Receive Idle Mode During Dial Tone Presence
- Volume Control Range: 34 dB
- Compatible with MC34119 Speaker Amplifier
Speakerphones (continued)

Telephone Line Interface and Speakerphone Circuit

MC33215B, FB
T_A = –20° to +70°C, Case 858, 848B

The MC33215 is developed for use in fully electronic telephone sets with speakerphone functions. The circuit performs the ac and dc line termination, 2–4 wire conversion, line length AGC and DTMF transmission. The speakerphone part includes a half duplex controller with signal and noise monitoring, base microphone and loudspeaker amplifiers and an efficient supply. The circuit is designed to operate at low line currents down to 4.0 mA enabling parallel operation with a classical telephone set.

FEATURES

Line Driver and Supply
• AC and DC Termination of Telephone Line
• Adjustable Set Impedance for Real and Complex Termination
• Efficient Supply Point for Loudspeaker Amplifier and Peripherals
• Two Stabilized Supply Points for Handset and Base Microphones
• Separate Supply Arrangement for Handset and Speakerphone Operation

Handset Operation
• Transmit and Receive Amplifiers
• Differential Microphone Inputs
• Sidetone Cancellation Network

• Line Length AGC
• Microphone and Earpiece Mute
• Separate Input for DTMF and Auxiliary Signals
• Parallel Operation Down to 4.0 mA of Line Current

Speakerphone Operation
• Handsfree Operation via Loudspeaker and Base Microphone
• Integrated Microphone and Loudspeaker Amplifiers
• Differential Microphone Inputs
• Loudspeaker Amplifier can be Powered and Used Separately from the Rest of the Circuit
• Integrated Switches for Smooth Switch–Over from Handset to Speakerphone Operation
• Signal and Background Noise Monitoring in Both Channels
• Adjustable Switching Depth for Handsfree Operation
• Adjustable Switch–Over and Idle Mode Timing
• Dial Tone Detector in the Receive Channel

Related Application Notes
• AN1574: “A Group Listening–In Application for the MC33215”
• AN1608: “Guidelines for the Speaker in a Line–Powered Speakerphone”
Table 10. The Motorola Family of Speakerphone Integrated Circuits

<table>
<thead>
<tr>
<th>Feature</th>
<th>MC34018</th>
<th>MC34118</th>
<th>MC33218A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two point sensing with slow idle, background noise monitor in T_x path only</td>
<td></td>
<td>Four point sensing with both fast and slow idle modes, background noise monitors in both R_x and T_x paths</td>
<td>Two point sensing with slow idle, background noise monitors in both R_x and T_x paths</td>
</tr>
<tr>
<td>No dial tone detector in receive path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receive path has dial tone detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuator Characteristics:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Range: 44 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tolerance: ±4.0 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gain tracking not specified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• White noise is constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External hybrid required</td>
<td></td>
<td>Hybrid amplifiers on board</td>
<td>External hybrid required</td>
</tr>
<tr>
<td>Speaker amplifier is on board (34 dB, 100 mW)</td>
<td>External speaker amplifier required (MC34119)</td>
<td>External speaker amplifier required (MC34119)</td>
<td></td>
</tr>
<tr>
<td>Filtering is external</td>
<td></td>
<td>Configurable filter on board</td>
<td>Filtering is external</td>
</tr>
<tr>
<td>Microphone amplifier has fixed gain and no muting</td>
<td></td>
<td>Microphone amplifier has adjustable gain and mute input</td>
<td>Microphone amplifier has adjustable gain, and can be muted through μP port</td>
</tr>
<tr>
<td>Supply Voltage: 4.0 V to 11 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current: 6.5 mA typ., 9.0 mA max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speaker amplifier reduces gain to prevent clipping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume control is linear. Cannot override voice switched operation except through additional circuitry. Attenuator gain is fixed at 44 dB (slightly variable). No microphone mute.</td>
<td>Volume control is linear, and microphone mute has separate pin. Cannot override voice switched operation except through additional circuitry. Attenuator gain is fixed at 52 dB.</td>
<td>8-bit μP serial port controls:</td>
<td></td>
</tr>
<tr>
<td>Volume control selection (26 dB or 52 dB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Required:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 12 Resistors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 11 Capacitors (≤ 1.0 µF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8 Capacitors (>1.0 µF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 14 Resistors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 12 Capacitors (≤ 1.0 µF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 9 Capacitors (>1.0 µF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range: -20° to $+60^\circ$ C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speakerphones (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>MC34018</th>
<th>MC34118</th>
<th>MC33218A</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Pin DIP and SOIC packages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range: -20° to $+60^\circ$ C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MC33218A

- Attenuator Characteristics:
 - Range: 52 or 26 dB (selectable)
 - Tolerance: ±3.0 dB
 - Gain Tracking: <1.0 dB
 - White noise reduces with volume
- External hybrid required
- Hybrid amplifiers on board
- External Required:
 - 12 Resistors
 - 11 Capacitors (≤ 1.0 µF)
 - 4 Capacitors (>1.0 µF)
- Temperature Range: -40° to $+85^\circ$ C
Table 10. The Motorola Family of Speakerphone Integrated Circuits (continued)

<table>
<thead>
<tr>
<th>MC33219A</th>
<th>MC33215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two point sensing with slow idle, background noise monitors in both R<sub>x</sub> and T<sub>x</sub> paths</td>
<td>Speech network + speakerphone. Two point sensing with slow idle, background noise monitors in both R<sub>x</sub> & T<sub>x</sub> paths</td>
</tr>
<tr>
<td>Receive path has dial tone detector</td>
<td>Receive path dial tone detector</td>
</tr>
<tr>
<td>Attenuator Characteristics:</td>
<td>Attenuator Characteristics:</td>
</tr>
<tr>
<td>• Range: 52 dB</td>
<td>• Range: 50 dB (Adjustable)</td>
</tr>
<tr>
<td>• Tolerance: ±3.0 dB</td>
<td>• Tolerance: ±4.0 dB</td>
</tr>
<tr>
<td>• Gain Tracking: <1.0 dB</td>
<td>• Gain Tracking: <1.0 dB</td>
</tr>
<tr>
<td>• White noise reduces with volume</td>
<td>• White noise reduces with gain</td>
</tr>
<tr>
<td>External hybrid required</td>
<td>Includes speech network, and AGC</td>
</tr>
<tr>
<td>External speaker amplifier required (MC34119)</td>
<td>Includes speaker amplifier with separate supply and mute</td>
</tr>
<tr>
<td>Filtering is external</td>
<td>Filtering is external</td>
</tr>
<tr>
<td>Microphone amplifier has adjustable gain and a mute input</td>
<td>Microphone paths have fixed gain, and mute control</td>
</tr>
<tr>
<td>Supply Voltage: 2.7 V to 6.5 V</td>
<td>Line Powered, 2.4 V to 10 V</td>
</tr>
<tr>
<td>Supply Current: 3.0 mA typ., 5.0 mA max</td>
<td>Total internal supply current ≈5.0 mA</td>
</tr>
<tr>
<td>Receive gain is reduced as supply voltage falls to prevent clipping</td>
<td>Speaker amplifier reduces gain to prevent clipping</td>
</tr>
<tr>
<td>Volume control is linear, and microphone mute has separate pin. Attenuator range fixed at 52 dB. Cannot override voice switched operation except through additional circuitry.</td>
<td>Volume control is linear. Logic inputs control mute based on operating mode. Standard dialer interface. Cannot override voice switched operation except through additional circuitry.</td>
</tr>
<tr>
<td>24 Pin narrow DIP and SOIC packages</td>
<td>42 Pin Shrink DIP, 52 Pin QFP</td>
</tr>
<tr>
<td>External Required:</td>
<td>External Required:</td>
</tr>
<tr>
<td>• 12 Resistors</td>
<td>• 30 Resistors</td>
</tr>
<tr>
<td>• 11 Capacitors (≤1.0 µF)</td>
<td>• 19 Capacitors (≤1.0 µF)</td>
</tr>
<tr>
<td>• 4 Capacitors (>1.0 µF)</td>
<td>• 11 Capacitors (>1.0 µF)</td>
</tr>
<tr>
<td>• Dialer + Hookswitch</td>
<td></td>
</tr>
<tr>
<td>Temperature Range: −40° to +85°C</td>
<td>Temperature Range: −20° to +70°C</td>
</tr>
</tbody>
</table>
Telephone Accessory Circuits

Audio Amplifier
MC34119P, D
$T_A = 0^\circ$ to $+70^\circ$C, Case 626, 751

A low power audio amplifier circuit intended (primarily) for telephone applications, such as speakerphones. Provides differential speaker outputs to maximize output swing at low supply voltages (2.0 V min.). Coupling capacitors to the speaker, and snubbers, are not required. Overall gain is externally adjustable from 0 to 46 dB. A Chip Disable pin permits powering–down to mute the audio signal and reduce power consumption.

- Drives a Wide Range of Speaker Loads (16 to 100 Ω)
- Output Power Exceeds 250 mW with 32 Ω Speaker
- Low Distortion (THD = 0.4% Typical)
- Wide Operating Supply Voltage (2.0 V to 16 V) – Allows Telephone Line Powered Applications.
- Low Quiescent Supply Current (2.5 mA Typical)
- Low Power–Down Quiescent Current (60 μA Typical)

Current Mode Switching Regulator
MC34129P, D
$T_A = 0^\circ$ to $+70^\circ$C, Case 646, 751A

High performance current mode switching regulator for low–power digital telephones. Unique internal fault timer provides automatic restart for overload recovery. A start/run comparator is included to implement bootstrapped operation of VCC.

Although primarily intended for digital telephone systems, these devices can be used cost effectively in many other applications. On–chip functions and features include:

- Current Mode Operation to 300 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle–By–Cycle Current Limiting
- Latched–Off or Continuous Retry after Fault Timeout
- Soft–Start with Maximum Peak Switch Current Clamp
- Internally Trimmed 2% Bandgap Reference
- Input Undervoltage Lockout
300 Baud FSK Modems

MC145442P, DW Modem – CCITT V.21
Case 738, 751D

MC145443P, DW Modem – Bell 103
Case 738, 751D

This powerful modem combines a complete FSK modulator/demodulator and an accompanying transmit/receive filter system on a single silicon chip. Designed for bidirectional transmission over the telephone network, the modem operates at 300 baud and can be obtained for compatibility with CCITT V.21 and Bell 103 specifications.

The modem contains an on–board carrier–detect circuit that allows direct operation on a telephone line (through a simple transformer), providing simplex, half–duplex, and full–duplex data communications. A built–in power amplifier is capable of driving –9.0 dBm onto a 600 Ω line in the transmit mode.

CMOS processing keeps power dissipation to a very low 45 mW, with a power–down dissipation of only 1.0 mW . . . from a single 5.0 V power supply. Available in a 20 pin dual–in–line P suffix, and a wide body surface mount DW suffix.

MC145444H, DW – CCITT V.21
Case 804, 751D

This device is a silicon gate CMOS single–chip 300 baud modem. It is compatible with CCITT V.21 and contains the entire circuit that provides a full–duplex or half–duplex 300 baud data communication over a twisted pair. The MC145444 is capable of driving 0 dBm into a 600 Ω load with a single 5.0 V power supply. In addition, this device features an on–board DTMF generator, call progress detector, and 2100 Hz answer tone generator. This device also features a three–wire serial interface for a microcontroller.

MC145446AFW – CCITT V.21
Case 751M

This device includes the DTMF generator and call progress tone detector (CPTD) as well as the other circuitry needed for full–duplex, half–duplex, or simplex 300 baud data communication over a pair of telephone lines. It is intended for use with telemeter system or remote control system applications.

The differential line driver is capable of driving 0 dBm into a 600 Ω load. The transmit attenuator is programmable in 1.0 dB steps.

ADPCM Transcoder

MC145532DW, L
Case 751G, 620

The MC145532 Adaptive Differential Pulse Code Modulation (ADPCM) Transcoder provides a low cost, full–duplex, single–channel transcoder to (from) a 64 kbps PCM channel from (to) either a 16 kbps, 24 kbps, 32 kbps, or 64 kbps channel.

- Complies with CCITT Recommendation G.721 (1988)
- Complies with the American National Standard (T1.301–1987)
- Full–Duplex, Single–Channel Operation
- Mu–Law or A–Law Coding is Pin Selectable
- Synchronous or Asynchronous Operation
- Easily Interfaces with any Member of Motorola’s PCM Codec–Filter Monocircuit Family or Other Industry Standard Codecs
- Serial PCM and ADPCM Data Transfer Rate from 64 kbps to 5.12 Mbps
- Power Down Capability for Low Cost Consumption
- The Reset State is Automatically Initiated when the Reset Pin is Released.
- Simple Time Slot Assignment Timing for Transcoder Applications
- Single 5.0 V Power Supply
- Evaluation Kit MC145536 EVK Supports the MC145532 as well as the MC14LC5480 PCM Codec–Filter. (See PBX Architecture Pages for More Information.)
Calling Line Identification (CLID) Receiver with Ring Detector

MC14LC5447P, DW

Case 648, 751G

The MC14LC5447 is designed to demodulate Bell 202 1200 baud FSK asynchronous data. Its primary application is in products that will be used to receive and display the calling number, or the message waiting indicator sent to subscribers from participating central office facilities of the public switched telephone network. The device also contains a carrier detect circuit and telephone ring detector which may be used to power up the device.

Applications include adjunct boxes, answering machines, feature phones, fax machines, and computer interface products.

Replaces MC145447P, DW.

• Ring Detector On–Chip
• Ring Detect Output for MCU Interrupt
• Power–Down Mode Less Than 1.0 \(\mu\)A
• Single Supply: 3.5 V to 6.0 V
• Pin Selectable Clock Frequencies: 3.68 MHz, 3.58 MHz, or 455 kHz
• Two–Stage Power–Up for Power Management Control

Calling Line ID Receiver Evaluation Kit

MC145460EVK

The MC145460EVK is a low cost evaluation platform for the MC14LC5447. The MC145460EVK facilitates development and testing of products that support the Bellcore customer premises equipment (CPE) data interface, which enables services such as Calling Number Delivery (CND). The MC14LC5447 can be easily incorporated into any telephone, FAX, PBX, key system, answering machine, CND adjunct box or other telephone equipment with the help of the MC145460EVK development kit.

• Easy Clip–On Access to Key MC14LC5447 Signals
• Generous Prototype Area
• Configurable for MC14LC5447 Automatic or External Power Up Control
• EIA–232 and Logic Level Ports for Connection to any PC or MCU Development Platform
• Carrier Detect, Ring Detect and Data Status LEDs
• Optional Tip and Ring Input Protection Network
• MC145460EVK User Guide, MC14LC5447 Data Sheet, and Additional MC14LC5447 Sample Included
Continuously Variable Slope Delta (CVSD) Modulator/Demodulator

MC34115P, DW
- $T_A = 0^\circ$ to $+70^\circ$C, Case 648, 751G

MC3418P, DW
- $T_A = 0^\circ$ to $+70^\circ$C, Case 648, 751G

Provides the A/D–D/A function of voice communications by digital transmission. Designed for speech synthesis and commercial telephone applications. A single IC provides both encoding and decoding.
- Encode and Decode Functions on the Same Chip with a Digital Input
- CMOS Compatible Digital Output
- Digital Input Threshold Selectable ($V_{CC}/2$ reference provided on Chip)
- MC34115 Has a 3–Bit Algorithm (General Communications)
- MC3418 Has a 4–Bit Algorithm (Commercial Telephone)
Telephone Accessory Circuits (continued)

Table 11. Summary of Bipolar Telecommunication Circuits

<table>
<thead>
<tr>
<th>Function</th>
<th>Features</th>
<th>Suffix/Package</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Loop Interface Circuits (SLICs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Office, Remote Terminals, PBX Applications</td>
<td>All gains externally programmable, most BORSHT functions, current limit adjustable to 50 mA, 58 dB Longitudinal Balance, −21.6 V to −42 V.</td>
<td>P/738, FN/776</td>
<td>MC33121</td>
</tr>
<tr>
<td>Central Office, Remote Terminals, PBX Applications</td>
<td>All gains externally programmable, most BORSHT functions, current limit adjustable to 50 mA, 58 dB Longitudinal Balance, −42 V to −58 V.</td>
<td>P/738, FN/776</td>
<td>MC33120</td>
</tr>
<tr>
<td>Complete Telephone Circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTS Circuit + MPU Dialing</td>
<td>Speech network, tone ringer, dc loop current interface, DTMF dialer with serial port control.</td>
<td>P/711, FN/777</td>
<td>MC34010</td>
</tr>
<tr>
<td>Tone Ringers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustable Tone Ringer</td>
<td>Single–ended output, meets FCC requirements, adjustable REN, different warble rates.</td>
<td>P/626, D/751</td>
<td>MC34012–1, 2, 3</td>
</tr>
<tr>
<td>Adjustable Tone Ringer</td>
<td>Differential output, meets FCC requirements, adjustable REN, different warble rates.</td>
<td>P/626, D/751</td>
<td>MC34017–1, 2, 3</td>
</tr>
<tr>
<td>Adjustable Tone Ringer</td>
<td>Differential output, meets FCC requirements, adjustable REN, single warble rates.</td>
<td>P/626, D/751</td>
<td>MC34217</td>
</tr>
<tr>
<td>Ring Signal Converter</td>
<td>Switching regulator to convert ringing voltage to regulated dc output. Provides ring detect output.</td>
<td>DP/626, FP/751</td>
<td>TCA3385</td>
</tr>
<tr>
<td>Speech Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech Network + Speakerphone</td>
<td>Line powered IC provides handset and speakerphone modes, dialer interface, ac/dc terminations, and AGC. Efficient supply design provides 90% of loop current to the speaker amplifier. Speaker amplifier may be used independently. Handset operation to 4.0 mA.</td>
<td>B/858, FB/848B</td>
<td>MC33215</td>
</tr>
<tr>
<td>Basic Phone Line Interface</td>
<td>Loop current interface, speech network, line length compensation, speech/dialing modes, Bell System compliant.</td>
<td>P/707, DW/751D</td>
<td>MC34014</td>
</tr>
<tr>
<td>Cordless Universal Telephone Interface</td>
<td>For cordless telephone base for CT0, CT1, CT2 and DECT. European dc masks, double wheatstone bridge sidetone circuit. SPI port for masks, AGC hookswitch, mute and gain settings. Requires 5.0 V and μP.</td>
<td>P/738, DW/751D</td>
<td>MC34016</td>
</tr>
<tr>
<td>Basic Phone Line Interface</td>
<td>Loop current interface, speech network, line length compensation, speech/dialing modes, Bell System and foreign countries.</td>
<td>P/707, DW/751D</td>
<td>MC34114</td>
</tr>
<tr>
<td>Programmable Telephone Line Interface Circuit with Loudspeaker Amplifier</td>
<td>Group listening–in, DTMF and tones generator, ring generator, country programmable, SPI interface.</td>
<td>DW/751F</td>
<td>MC34216</td>
</tr>
<tr>
<td>European Speech Network, Programmable Speaker Amplifier</td>
<td>Line powered, European dc masks, DTMF and pilot tone generator, listening–in mode with anti–howling. 2–wire bus control masks, DTMF tones, speaker gain, pulse dialing, mute, AGC. Requires MCU.</td>
<td>DW/751</td>
<td>MC34216A</td>
</tr>
<tr>
<td>European Speech Network</td>
<td>Loop current interface, speech network, line length compensation, speech/dialing modes, programmable masks for French, U.K., low voltage and PABX systems.</td>
<td>DP/738, FP/751</td>
<td>TCA3388</td>
</tr>
</tbody>
</table>
Summary of Bipolar Telecommunications Circuits (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Features</th>
<th>Suffix/Package</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speakerphone Circuits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech Network + Speakerphone</td>
<td>Line powered IC provides handset and speakerphone modes, dialer interface, ac/dc terminations, and AGC. Efficient supply design provides 90% of loop current to the speaker amplifier. Speaker amplifier may be used independently. Handset operation to 4.0 mA.</td>
<td>B/858, FB/848B</td>
<td>MC33215</td>
</tr>
<tr>
<td>Complete Speaker Phone with Speaker Amplifier</td>
<td>All level detection (2 pt.), attenuators, and switching controls, mike and speaker amp.</td>
<td>P/710, DW/751F</td>
<td>MC34018</td>
</tr>
<tr>
<td>Complete Speaker Phone with Hybrid, Filter</td>
<td>All level detection (4 pt.), attenuators, and switching controls, mike amp with mute, hybrid, and filter.</td>
<td>P/710, DW/751F</td>
<td>MC34118</td>
</tr>
<tr>
<td>Complete Speaker Phone with MPU Interface</td>
<td>All level detection, attenuators, and switching controls, mike amp, MPU interface for: volume control, mode selection, mike mute.</td>
<td>P/724, DW/751E</td>
<td>MC33218A</td>
</tr>
<tr>
<td>Basic Low Cost Speakerphone</td>
<td>All level detection, attenuators and switching controls, Mike amplifier with Mute, low voltage operation.</td>
<td>P/724, DW/751E</td>
<td>MC33219A</td>
</tr>
<tr>
<td>Audio Amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Watt Audio Amp</td>
<td>1.0 W output power into 16 Ω, 35 V maximum.</td>
<td>D/751</td>
<td>MC13060</td>
</tr>
<tr>
<td>Low Voltage Audio Amp</td>
<td>400 mW, 8.0 to 100 Ω, 2.0 to 16 V, differential outputs, chip–disable input pin.</td>
<td>P/626, D/751</td>
<td>MC34119</td>
</tr>
<tr>
<td>Companders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Comander</td>
<td>2.1 V to 7.0 V, no precision externals, 80 dB range, −40° to +85°C, independent compressor and expander.</td>
<td>P/646, D/751A</td>
<td>MC33110</td>
</tr>
<tr>
<td>Comander with Features</td>
<td>3.0 V to 7.0 V, no precision externals, 80 dB range, −40° to +85°C, independent compressor and expander, pass through and mute functions, two op amps.</td>
<td>P/648, D/751B</td>
<td>MC33111</td>
</tr>
<tr>
<td>Switching Regulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Mode Regulator</td>
<td>For phone line power applications, soft–start, current limiting, 2% accuracy.</td>
<td>P/646, D/751A</td>
<td>MC34129</td>
</tr>
<tr>
<td>Voice Encoder/Decoders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuously Variable Slope Modulator/Demodulator (CVSD)</td>
<td>Telephone quality voice encoding/decoding, variable clock rate, 3–bit coding, for secure communications, voice storage/retrieval, answering machines, 0° to 70°C.</td>
<td>P/738, DW/751G</td>
<td>MC34115</td>
</tr>
<tr>
<td></td>
<td>Same as above except 4–bit coding.</td>
<td>P/738, DW751G</td>
<td>MC3418</td>
</tr>
</tbody>
</table>
Figure 5. The Motorola Family of Handset Telecom Integrated Circuits

MC34018
- Speakerphone w/Speaker Amp

MC34118
- Speakerphone w/Hybrid Amps

MC33218A
- Speakerphone w/MPU Interface

MC33219A
- Basic Low Cost Speakerphone

MC34119
- 400 mW Speaker Amplifier

MC34010
- Speech Network
- DC Interface
- Microprocessor Interface
- DTMF Generator
- Tone Ringer

MC33110
- Low Voltage Compander (Basic Compander)

MC33111
- Low Voltage Compander (w/Mute & Passthrough, Op Amps)

MC34114
- Speech Network
- DC Interface
- Dialer Interface

MC34017
- Tone Ringer (Push–Pull Output)

MC34217
- Tone Ringer (Push–Pull Output)
Phase–Locked Loop Components

Motorola offers a choice of phase–locked loop components ranging from complete functional frequency synthesizers for dedicated applications to a wide selection of general purpose PLL circuit elements. Technologies include CMOS for lowest power consumption and bipolar for high speed operation. Typical applications include TV, CATV, radios, scanners, WLANs, cordless telephones plus home and personal computers.

Table 12. PLL Frequency Synthesizers

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Nominal Supply Current (mA)</th>
<th>Phase Detector</th>
<th>Standby</th>
<th>Interface</th>
<th>Device</th>
<th>Suffix/Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 @ 5 V</td>
<td>4.5 to 12</td>
<td>6 @ 5 V</td>
<td>Single–ended 3–state</td>
<td>No</td>
<td>Parallel</td>
<td>MC145106</td>
<td>P/707, DW/751D</td>
</tr>
<tr>
<td>15 @ 5 V</td>
<td>3 to 9</td>
<td>–</td>
<td>Two single–ended 3–state</td>
<td>Serial</td>
<td>MC145149*</td>
<td>P/738, DW/751D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5 @ 5 V</td>
<td>Analog</td>
<td></td>
<td></td>
<td>MC145159–1</td>
<td>P/738, DW/751D</td>
</tr>
<tr>
<td>20 @ 5 V</td>
<td>3 to 9</td>
<td>7.5 @ 5 V</td>
<td>Single–ended 3–state, double–ended</td>
<td>4–Bit</td>
<td>MC145151–2</td>
<td>P/710, DW/751F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double–ended</td>
<td></td>
<td></td>
<td>MC145152–2</td>
<td>P/710, DW/751F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC145156–2</td>
<td>P/707, DW/751D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC145157–2</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC145158–2</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td>60 @ 3 V</td>
<td>2.5 to 5.5</td>
<td>3 @ 3 V</td>
<td>Two single–ended 3–state</td>
<td>Yes</td>
<td>Parallel</td>
<td>MC145162*</td>
<td>P/648, D/751B</td>
</tr>
<tr>
<td>60 @ 2 V</td>
<td>1.8 to 3.6</td>
<td>1.5 @ 1.8 V</td>
<td></td>
<td></td>
<td></td>
<td>MC145165*</td>
<td>P/648, D/751B</td>
</tr>
<tr>
<td>60 @ 3 V</td>
<td>2.5 to 5.5</td>
<td>3 @ 3 V</td>
<td></td>
<td></td>
<td>Serial</td>
<td>MC145166*</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC145167*</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parallel</td>
<td>MC145168*</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serial</td>
<td>MC145169*</td>
<td>P/648, DW/751G</td>
</tr>
<tr>
<td>85 @ 3 V</td>
<td>2.5 to 5.5</td>
<td>3 @ 3 V</td>
<td></td>
<td></td>
<td></td>
<td>MC145162–1*</td>
<td>P/648, D/751B</td>
</tr>
<tr>
<td>40/130 @ 5 V</td>
<td>4.5 to 5.5</td>
<td>9 @ 5 V</td>
<td>Single–ended 3–state, Current source/sink</td>
<td></td>
<td></td>
<td>MC145173</td>
<td>DW/751E</td>
</tr>
<tr>
<td>100 @ 3 V</td>
<td>2.5 to 5.5</td>
<td>2 @ 3 V</td>
<td></td>
<td></td>
<td>No</td>
<td>MC145170–1</td>
<td>P/648, D/751B, DT/948C</td>
</tr>
<tr>
<td>185 @ 5 V</td>
<td>2.5 to 5.5</td>
<td>6 @ 5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Dual PLL
Phase-Locked Loop Components (continued)

PLL Frequency Synthesizers (continued)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Supply Voltage (V)</th>
<th>Nominal Supply Current (mA)</th>
<th>Phase Detector</th>
<th>Standby</th>
<th>Interface</th>
<th>Device</th>
<th>Suffix/Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>4.5 to 5.5</td>
<td>7 @ 5 V</td>
<td>Current source/sink, double-ended</td>
<td>Yes</td>
<td>Serial</td>
<td>MC145190</td>
<td>F/751J, DT/948D</td>
</tr>
<tr>
<td>1100</td>
<td>2.7 to 5</td>
<td>6 @ 2.7 V</td>
<td></td>
<td></td>
<td></td>
<td>MC145191</td>
<td>F/751J, DT/948D</td>
</tr>
<tr>
<td>1100</td>
<td>2.7 to 5.5</td>
<td>12</td>
<td>Two current source/sink, double-ended</td>
<td></td>
<td></td>
<td>MC145192</td>
<td>F/751J, DT/948D</td>
</tr>
<tr>
<td>1200, 400</td>
<td>1.8 to 3.6</td>
<td>5</td>
<td>Loop 1 = Current source/sink Loop 2 = Three-state</td>
<td></td>
<td></td>
<td>MC145220*</td>
<td>F/803C, DT/948D</td>
</tr>
<tr>
<td>2000</td>
<td>4.5 to 5.5</td>
<td>12 @ 5 V</td>
<td>Current source/sink, double-ended</td>
<td></td>
<td></td>
<td>MC145225*</td>
<td>FTA/873C</td>
</tr>
<tr>
<td>2000</td>
<td>4.5 to 5.5</td>
<td>12 @ 5 V</td>
<td></td>
<td></td>
<td></td>
<td>MC145200</td>
<td>F/751J, DT/948D</td>
</tr>
<tr>
<td>2000</td>
<td>2.7 to 5.5</td>
<td>4 @ 3 V</td>
<td></td>
<td></td>
<td></td>
<td>MC145202</td>
<td>F/751J, DT/948D</td>
</tr>
<tr>
<td>2600, 400</td>
<td>1.8 to 3.6</td>
<td>7</td>
<td>Loop 1 = Current source/sink Loop 2 = Three-state</td>
<td></td>
<td></td>
<td>MC145230*</td>
<td>FTA/873C</td>
</tr>
</tbody>
</table>

* Dual PLL

NOTE: Evaluation kits available for the MC145190, MC145191, MC145192, MC145200, MC145201, MC145202, and MC145220. Order part number MC145_ _ _EVK.

Table 13. Phase-Locked Loop Functions

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Pins</th>
<th>DIP</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1648</td>
<td>Voltage Controlled Oscillator</td>
<td>14</td>
<td>P.L</td>
<td>D,FN</td>
</tr>
<tr>
<td>MC1658</td>
<td>Voltage Controlled Multivibrator</td>
<td>16</td>
<td>P.L</td>
<td>D,FN</td>
</tr>
<tr>
<td>MC12002</td>
<td>Analog Mixer</td>
<td>14</td>
<td>P</td>
<td>–</td>
</tr>
<tr>
<td>MC12009</td>
<td>480 MHz ÷5/6 Dual Modulus Prescaler</td>
<td>16</td>
<td>P</td>
<td>–</td>
</tr>
<tr>
<td>MC12011</td>
<td>550 MHz ÷8/9 Dual Modulus Prescaler</td>
<td>16</td>
<td>P</td>
<td>–</td>
</tr>
<tr>
<td>MC12013</td>
<td>550 MHz ÷10/11 Dual Modulus Prescaler</td>
<td>16</td>
<td>P</td>
<td>–</td>
</tr>
<tr>
<td>MC12015</td>
<td>225 MHz ÷32/33 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12016</td>
<td>225 MHz ÷40/41 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12017</td>
<td>225 MHz ÷64/65 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12018</td>
<td>520 MHz ÷128/129 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12019</td>
<td>225 MHz ÷20/21 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12022LVA</td>
<td>1.1 GHz ÷64/65, ÷128/129 Low Voltage Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12022LVB</td>
<td>1.1 GHz ÷64/65, ÷128/129 Low Voltage Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12023</td>
<td>225 MHz ÷64 Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12026A</td>
<td>1.1 GHz ÷8/9, ÷16/17 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12026B</td>
<td>1.1 GHz ÷8/9, ÷16/17 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12028A</td>
<td>1.1 GHz ÷32/33, ÷64/65 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12028B</td>
<td>1.1 GHz ÷32/33, ÷64/65 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
</tbody>
</table>
Phase–Locked Loop Components (continued)

Phase–Locked Loop Functions (continued)

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Pins</th>
<th>DIP</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC12033A</td>
<td>2.0 GHz ÷32/33, ÷64/65 Low Voltage Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12033B</td>
<td>2.0 GHz ÷32/33, ÷64/65 Low Voltage Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12034A</td>
<td>2.0 GHz ÷32/33, ÷64/65 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12034B</td>
<td>2.0 GHz ÷32/33, ÷64/65 Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12038A</td>
<td>1.1 GHz ÷64/65, ÷127/128, ÷255/256 Low Power Dual Modulus Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12040</td>
<td>Phase-Frequency Detector</td>
<td>14,20</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>MC12052A</td>
<td>1.1 GHz ÷64/65, ÷128/129 Super Low Power Dual Modulus Prescaler</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12053A</td>
<td>1.1 GHz ÷64/65, ÷128/129 Super Low Power Dual Modulus Prescaler With Stand-By Mode</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12054A</td>
<td>2.0 GHz ÷64/65, ÷128/129 Super Low Power Dual Modulus Prescaler</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12058</td>
<td>1.1 GHz ÷126/128, ÷254/256 Low Power Dual Modulus Prescaler</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12061</td>
<td>Crystal Oscillator</td>
<td>16</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>MC12066</td>
<td>1.3 GHz ÷64/256 Prescaler</td>
<td>8</td>
<td>–</td>
<td>D</td>
</tr>
<tr>
<td>MC12079</td>
<td>2.8 GHz ÷64/128/256 Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12080</td>
<td>1.1 GHz ÷10/20/40/80 Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12089</td>
<td>2.8 GHz ÷64/128 Prescaler</td>
<td>8</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>MC12093</td>
<td>1.1 GHz ÷2/4/8 Low Power Prescaler With Stand-By Mode</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12095</td>
<td>2.5 GHz ÷2/4 Low Power Prescaler With Stand-By Mode</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12098</td>
<td>2.5 GHz ÷8192 Prescaler</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MCH/K12140</td>
<td>Phase-Frequency Detector</td>
<td>8</td>
<td>–</td>
<td>D</td>
</tr>
<tr>
<td>MC12147</td>
<td>Low Power Voltage Controlled Oscillator Buffer</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12148</td>
<td>Low Power Voltage Controlled Oscillator</td>
<td>8</td>
<td>–</td>
<td>D, SD, P</td>
</tr>
<tr>
<td>MC12149</td>
<td>Ultra Low Power Voltage Controlled Oscillator</td>
<td>8</td>
<td>–</td>
<td>D, SD</td>
</tr>
<tr>
<td>MC12179</td>
<td>500–2800 MHz Single Channel Frequency Synthesizer</td>
<td>8</td>
<td>–</td>
<td>D</td>
</tr>
<tr>
<td>MC12181</td>
<td>125–1000 MHz Frequency Synthesizer</td>
<td>16</td>
<td>–</td>
<td>D</td>
</tr>
</tbody>
</table>
Communications Circuits Package Overview

CASE 620
L SUFFIX

CASE 626
P SUFFIX

CASE 646
P SUFFIX

CASE 648
P SUFFIX

CASE 707
P SUFFIX

CASE 708
P SUFFIX

CASE 709
P SUFFIX

CASE 710
P SUFFIX

CASE 711
P SUFFIX

CASE 724
P SUFFIX

CASE 726
L SUFFIX

CASE 738
DP, P SUFFIX

CASE 751
D SUFFIX

CASE 751A
D SUFFIX

CASE 751B
D SUFFIX

CASE 751D
DW, FP SUFFIX

CASE 751E
DW SUFFIX

CASE 751F
DW SUFFIX