MCP100/101

Microcontroller Supervisory Circuit with Push-Pull Output

FEATURES

- Holds microcontroller in reset until supply voltage reaches stable operating level
- Resets microcontroller during power loss
- Precision monitoring of 3V, 3.3V, and 5V systems
- 7 voltage trip points available
- Active low RESET pin (MCP100) or active high RESET (MCP101)
- Push-pull output
- Holds RESET/RESET for 350 ms (typical)
- Guaranteed RESET/RESET to $V_{DD} = 1.0V$
- Accuracy of $\pm 125mV$ for 5V systems and $\pm 75mV$ for 3V systems over temperature
- 45 μA typical operating current
- Temperature range:
 - Industrial (I): -40°C to +85°C

DESCRIPTION

The Microchip Technology Inc. MCP100/101 is a voltage supervisory device designed to keep a microcontroller in reset until the system voltage has reached the proper level and stabilized. It also operates as protection from brown-out conditions when the supply voltage drops below a safe operating level. Both devices are available with a choice of seven different trip voltages and both have push-pull outputs. The MCP100 has a low active RESET pin and the MCP101 has a high active RESET pin. The MCP100/101 will assert the RESET/RESET signal whenever the voltage on the V_{DD} pin is below the trip-point voltage.

PACKAGES

- TO-92 with 'D' Bondout
 - MCP100
 - MCP101
- TO-92 with 'H' Bondout
 - MCP100
 - MCP101
- SOT-23-3
 - MCP100
 - MCP101

BLOCK DIAGRAM
MCP100/101

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>1.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VDD Value to Guarantee RESET/RESET</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating current</td>
<td>45</td>
<td>60</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VDD Trip Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-270</td>
<td>2.55</td>
<td>2.625</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>MCP10X-300</td>
<td>2.85</td>
<td>2.925</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MCP10X-315</td>
<td>3.0</td>
<td>3.075</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>MCP10X-450</td>
<td>4.25</td>
<td>4.375</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>MCP10X-460</td>
<td>4.35</td>
<td>4.475</td>
<td>4.60</td>
<td></td>
</tr>
<tr>
<td>MCP10X-475</td>
<td>4.50</td>
<td>4.625</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>MCP10X-485</td>
<td>4.60</td>
<td>4.725</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>MCP100-270</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-270</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-270</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-270</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-XX</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Hysteresis VHYST</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD Detect to RESET/RESET Inactive</td>
<td>150</td>
<td>350</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>VDD Detect to RESET/RESET</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC AND AC CHARACTERISTICS

All parameters apply at the specified temp and voltage ranges unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage Range</td>
<td>VDD</td>
<td>1.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VDD Value to Guarantee RESET/RESET</td>
<td>VDDMIN</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating current</td>
<td>IDD</td>
<td>45</td>
<td>60</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VDD Trip Point</td>
<td>VTRIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-270</td>
<td>2.55</td>
<td>2.625</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-300</td>
<td>2.85</td>
<td>2.925</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-315</td>
<td>3.0</td>
<td>3.075</td>
<td>3.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-450</td>
<td>4.25</td>
<td>4.375</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-460</td>
<td>4.35</td>
<td>4.475</td>
<td>4.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-475</td>
<td>4.50</td>
<td>4.625</td>
<td>4.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP10X-485</td>
<td>4.60</td>
<td>4.725</td>
<td>4.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-270</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-270</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-XX</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP100-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP101-XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All VTRIP Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Hysteresis VHYST</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD Detect to RESET/RESET Inactive</td>
<td>150</td>
<td>350</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD Detect to RESET/RESET</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VDD = 1.0 - 5.5V
Industrial (I):-40°C to +85°C
2.0 APPLICATIONS INFORMATION

2.1 The Need for Supervisory Circuits

For many of today's microcontroller applications, care must be taken to prevent low power conditions that can cause many different system problems. The most common causes are brown-out conditions where the system supply drops below the operating level momentarily, and the second, is when a slowly decaying power supply causes the microcontroller to begin executing instructions without enough voltage to sustain SRAM and producing indeterminate results.

2.2 Negative Going V_{DD} Transients

Many system designers implementing POR circuits are concerned about the minimum pulse width required to cause a reset. Figure 2-2 shows typical transient duration vs. reset comparator overdrive for which the MCP100/101 will not generate a reset pulse. It shows that the farther below the trip point the transient pulse goes, the duration of the pulse required to cause a reset gets shorter. A 0.1 µF bypass cap mounted as close as possible to the V_{DD} pin provides additional transient immunity.
2.3 Effect of Temperature on Timeout Period (t_{RPU})

The timeout period (t_{RPU}) determines how long the device remains in the reset condition. This is controlled by an internal RC timer and is effected by both V_{DD} and temperature. The graph shown in Figure 2-3 shows typical response for different V_{DD} values and temperatures.

FIGURE 2-3: Typical t_{RPU} vs. Temperature

- $V_{DD} = 5V$
- $V_{DD} = 4V$
- $V_{DD} = 3V$
- $V_{DD} = 6V$

FIGURE 2-4: I_{DD} vs. Temperature

FIGURE 2-5: Normalized V_{TRIP} vs. Temperature

- $V_{DD} = 5V$
- $V_{DD} = 3V$
- $V_{DD} = 5.5V$
- $V_{DD} = 4V$

FIGURE 2-6: V_{OL} vs. I_{OL}

FIGURE 2-7: Normalized I_{OL} vs. Temperature

* Multiply value at 25°C by this factor to determine the value at temperature.
FIGURE 2-8: \(V_{DD} - V_{OH} \) vs. \(I_{OH} \)

FIGURE 2-9: Normalized \(V_{OH} \) vs. Temperature

* Multiply value at 25°C by this factor to determine the value at temperature.
NOTES:
MCP100/101 PRODUCT IDENTIFICATION SYSTEM

Package:
- TO = TO-92 (3-lead) [offered in bags only]
- TT = SOT-23 (3-lead) [offered in tape & reel only]

Temperature Range:
- I = –40˚C to +85˚C (only offered in I)

Bondout Option (TO-92 only):
- D = D Bond Option (see bond option chart below)
- H = H Bond Option

RESET/RESET

V\text{TRIP} Voltage:
- 270 = 2.55 \leq V\text{TRIP} \leq 2.70
- 300 = 2.85 \leq V\text{TRIP} \leq 3.00
- 315 = 3.00 \leq V\text{TRIP} \leq 3.15
- 450 = 4.25 \leq V\text{TRIP} \leq 4.50
- 460 = 4.35 \leq V\text{TRIP} \leq 4.60
- 475 = 4.50 \leq V\text{TRIP} \leq 4.75
- 485 = 4.60 \leq V\text{TRIP} \leq 4.85

Device:
- MCP100 = Supervisor circuit with active low RESET output
- MCP100T = Supervisor circuit with active low RESET output (tape & reel)
- MCP101 = Supervisor circuit with active high RESET output
- MCP101T = Supervisor circuit with active high RESET output (tape & reel)

Product Identification Options for MCP100/101

<table>
<thead>
<tr>
<th>TO-92 with D Bondout</th>
<th>TO-92 with H Bondout</th>
<th>SOT-23-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP100-xxxD I/TO</td>
<td>MCP100-xxxD I/TO</td>
<td>MCP100-xxx I/TT</td>
</tr>
<tr>
<td>MCP101-xxxD I/TO</td>
<td>MCP101-xxxD I/TO</td>
<td>MCP101-xxx I/TT</td>
</tr>
</tbody>
</table>

Example of Product Identification:
For the MCP100 (active low RESET pin) with V\text{TRIP} range of 2.55V - 2.70V in TO-92 package with 'H' bond option in industrial temp range, the part number would be: MCP100-270H I/TO.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
AMERICAS

Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602-786-7627
Web: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30335
Tel: 770-640-0034 Fax: 770-640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-8990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588

Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit
Microchip Technology Inc.
42705 Grand River, Suite 201
Novi, MI 48375-1727
Tel: 248-374-1888 Fax: 248-374-2874

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

AMERICAS (continued)

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

ASIA/PACIFIC

Hong Kong
Microchip Asia Pacific
RM 3801B, Tower Two
Metropolis
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-2012 Fax: 852-2-401-3431

India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan
Microchip Technology Intl. Inc.
Benex S-1 1F
3-18-20, Shinoyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg, 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan'an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

ASIA/PACIFIC (continued)

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
407-02 Prime Centre
Singapore 189890
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-039

EUROPE

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835

France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buissou aux Fraises
91300 Massy, France
Tel: 33-1-69 53-60-20 Fax: 33-1-69 30-90 79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899983

9/29/98