LM6118/LM6218
Fast Settling Dual Operational Amplifiers

General Description
The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 mA output drive capability. The PNP input stage has a typical bias current of 200 nA, and the operating supply voltage is ±5V to ±20V.

These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.

The amplifiers are built on a junction-isolated VIP™ (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

Features
- Low offset voltage: 0.2 mV
- 0.01% settling time: 400 ns
- Slew rate $A_v = -1$: 140 V/µs
- Slew rate $A_v = +1$: 75 V/µs
- Gain bandwidth: 17 MHz
- Total supply current: 5.5 mA
- Output drives 50Ω load (±1V)

Applications
- D/A converters
- Fast integrators
- Active filters

Connection Diagrams and Order Information

Small Outline Package (WM)

Top View
Order Number LM6218WM
See NS Package Number M14B

Dual-In-Line Package (J or N)

Top View
Order Number LM6118N, LM6218AN or LM6218N
See NS Package Number N08E

VIP™ is a trademark of National Semiconductor Corporation.
Typical Applications

Single ended input to differential output
$A_v = 10, BW = 3.2 \text{ MHz}$
40 Vpp Response = 1.4 MHz
$V_S = \pm 15V$

Wide-Band, Fast-Settling
40 Vpp Amplifier
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- Total Supply Voltage: 42V
- Input Voltage (Note 2): ±10 mA
- Differential Input Current (Note 3): ±10 mA
- Output Current (Note 4): Internally Limited
- Power Dissipation (Note 5): 500 mW
- ESD Tolerance: ±2 kV

Operating Temp. Range

- LM6118: −55°C to +125°C
- LM6218A: −40°C to +85°C
- LM6218: −40°C to +85°C

Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ 25°C</th>
<th>LM6118 Limits (Note 6)</th>
<th>LM6218A Limits (Note 6)</th>
<th>LM6218 Limits (Note 6)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage V<sub>S</sub></td>
<td>±15V</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>mV (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage V<sub>−</sub> + 3V ≤ V<sub>CM</sub> ≤ V<sub>+</sub> − 3.5V</td>
<td></td>
<td>0.3</td>
<td>1.5</td>
<td>1.5</td>
<td>3.5</td>
<td>mV (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current V<sub>−</sub> + 3V ≤ V<sub>CM</sub> ≤ V<sub>+</sub> − 3.5V</td>
<td></td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>nA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current V<sub>−</sub> + 3V ≤ V<sub>CM</sub> ≤ V<sub>+</sub> − 3.5V</td>
<td></td>
<td>200</td>
<td>350</td>
<td>350</td>
<td>500</td>
<td>nA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>950</td>
<td>950</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>Input Common Mode Rejection Ratio V<sub>−</sub> + 3V ≤ V<sub>CM</sub> ≤ V<sub>+</sub> − 3.5V</td>
<td>V<sub>S</sub> = ±20V</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>85</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Positive Power Supply Rejection Ratio V<sub>−</sub> = −15V</td>
<td>5V ≤ V<sub>+</sub> ≤ 20V</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>85</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Negative Power Supply Rejection Ratio V<sub>+</sub> = 15V</td>
<td>−20V ≤ V<sub>−</sub> ≤ −5V</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>85</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain V<sub>out</sub> = ±15V R<sub>L</sub> = 10k</td>
<td>V<sub>S</sub> = ±20V</td>
<td>500</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>V/mV (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V<sub>out</sub> = ±10V R<sub>L</sub> = 500</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>V/mV (min)</td>
</tr>
<tr>
<td></td>
<td>(±20 mA)</td>
<td></td>
<td>30</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>V<sub>o</sub> Output Voltage Swing Supply = ±20V R<sub>L</sub> = 10k</td>
<td></td>
<td>17.3</td>
<td>±17</td>
<td>±17</td>
<td>±17</td>
<td>V (min)</td>
</tr>
<tr>
<td>Total Supply Current V<sub>S</sub> = ±15V</td>
<td></td>
<td>5.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>mA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Output Current Limit V<sub>S</sub> = ±15V, Pulsed</td>
<td></td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>mA (max)</td>
</tr>
<tr>
<td>Slew Rate, A<sub>v</sub> = −1</td>
<td>V<sub>S</sub> = ±15V, V<sub>out</sub> = ±10V R<sub>R</sub> = R<sub>f</sub> = 2k, C<sub>f</sub> = 10 pF</td>
<td>140</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>V/µs (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Slew Rate, A<sub>v</sub> = +1</td>
<td>V<sub>S</sub> = ±15V, V<sub>out</sub> = ±10V R<sub>R</sub> = R<sub>f</sub> = 2k, C<sub>f</sub> = 10 pF</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>V/µs (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gain-Bandwidth Product V<sub>S</sub> = ±15V, f<sub>o</sub> = 200 kHz</td>
<td></td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>MHz (min)</td>
</tr>
<tr>
<td>0.01% Settling Time A<sub>v</sub> = −1</td>
<td>ΔV<sub>out</sub> = 10V, V<sub>S</sub> = ±15V, R<sub>R</sub> = R<sub>f</sub> = 2k, C<sub>f</sub> = 10 pF</td>
<td>400</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance Inverter</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Follower</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: Input voltage range is (V⁺ − 1V) to (V[−]).
Note 3: The inputs are shunted with three series-connected diodes back-to-back for input differential clamping. Therefore differential input voltages greater than about 1.8V will cause excessive current to flow unless limited to less than 10 mA.

Note 4: Current limiting protects the output from a short to ground or any voltage less than the supplies. With a continuous overload, the package dissipation must be taken into account and heat sinking provided when necessary.

Note 5: Devices must be derated using a thermal resistance of 90°C/W for the N and WM packages.

Note 6: Limits are guaranteed by testing or correlation.

Typical Performance Characteristics

Input Bias Current

Input Noise Voltage

Common Mode Limits

Common Mode Rejection

Power Supply Rejection

Frequency Response

High Frequency

Unity Gain Bandwidth

Unity Gain Bandwidth vs Output Load

Large Signal Response (Sine Wave)
Typical Performance Characteristics (Continued)

Application Information

General

The LM6118/LM6218 are high-speed, fast-settling dual op-amps. To insure maximum performance, circuit board lay-out is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier’s input and output will minimize problems.

Supply Bypassing

To assure stability, it is recommended that each power supply pin be bypassed with a 0.1 µF low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation

These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an N package with large areas of copper on the pc board is recommended.

Amplifier Shut Down

If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the V− pin. This will reduce the power supply current by approximately 25%.

Capacitive Loading

Maximum capacitive loading is about 50 pF for a closed-loop gain of +1, before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains, is shown in the Typical Performance Characteristics section.

To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with 50Ω. Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.
Examples of unity gain connections for a voltage follower, Inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1–C1 time constants and capacitive loads will have an effect on settling times.

Input Bias Current Compensation

Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.

Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.

For $C_L = 1000 \text{ pF}$, Small signal BW = 5 MHz
20 V_{pp}, BW = 500 kHz

Settling time to 0.01%, 10V Step
For $C_L = 1000 \text{ pF}$, settling time = 1500 ns
For $C_L = 300 \text{ pF}$, settling time = 500 ns
Bias Current Compensation

(a) Inverting Input Bias Compensation for Integrator Application

Application Information (Continued)

(b) Compensation to Both Inputs

*mount resistor close to input pin to minimize stray capacitance

Ampifier/Parallel Buffer

\[A_V = 5, \ I_{OUT} \leq 80 \ mA \]
\[V_S = \pm 15 V, C_L \leq 0.01 \mu F \]

Large and small signal B.W. = 1.3 MHz (THD = 3%)

www.national.com
Application Information (Continued)

Constant-Voltage Crossover Network With 12 dB/Octave Slope

\[V_S = \pm 15\text{V}, -10 \leq V_{IN} \leq 10\text{V} \]

Output dynamic range = 10 V – R6 |I_{OUT}|

R_L = 500\Omega, small signal BW = 6 MHz

Large signal response = 800 kHz

Bilateral Current Source

\[V_D = \pm 15\text{V}, -10 \leq V_{IN} \leq 10\text{V} \]

\[I_{OUT} = \frac{R_4}{R_2 R_6} \frac{1}{10\text{V}} \]

Output dynamic range = 10 V – R6 |I_{OUT}|

R_L = 500\Omega, small signal BW = 6 MHz

Large signal response = 800 kHz

Coaxial Cable Driver

Small signal (200 mV_p-p) BW = 5 MHz

\[C_{\text{out, equiv.}} = \frac{R_2 + R_4}{2\pi f_0 R_2 R_6} \] 32 pF (f_0 = 15 MHz)
Application Information (Continued)

Instrumentation Amplifier

A_V = 10, V_S = ±15V, All resistors 0.01%
Small signal and large signal (20 V_p-p) B.W. = 800 kHz

150 MHz Gain-Bandwidth Amplifier

A_V = 100, V_S = ±15V,
Small signal BW = 1.5 MHz
Large signal BW (20 V_p-p) = 800 kHz

Schematic Diagram

1/2 LM6118 (Op Amp A)
Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Molded Small Outline Package (M)
Order Number LM6218AWM or LM6218WM
NS Package Number M14B
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.