LM1558/LM1458
Dual Operational Amplifier

General Description
The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0˚C to +70˚C instead of -55˚C to +125˚C.

Features
- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead can and 8-lead mini DIP
- No latch up when input common mode range is exceeded

Schematic and Connection Diagrams

Numbers in parentheses are pin numbers for amplifier B.
Schematic and Connection Diagrams (Continued)

Metal Can Package

Top View
Order Number LM1558H, LM1558H/883 or LM1458H
See NS Package Number H08C

Dual-In-Line Package

Top View
Order Number LM1558J, LM1558J/883, LM1458J, LM1458M or LM1458N
See NS Package Number J08A, M08A or N08E
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 5)

Supply Voltage
LM1558 ±22V
LM1458 ±18V

Power Dissipation (Note 2)
LM1558H/LM1458H 500 mW
LM1458N 400 mW

Differential Input Voltage ±30V
Input Voltage (Note 3) ±15V
Output Short-Circuit Duration Continuous

Operating Temperature Range
LM1558 −55˚C to +125˚C
LM1458 0˚C to +70˚C

Storage Temperature Range −65˚C to +150˚C

Lead Temperature (Soldering, 10 sec.) 260˚C

Soldering Information
Dual-In-Line Package Soldering (10 seconds) 260˚C
Small Outline Package Vapor Phase (60 seconds) 215˚C
Infrared (15 seconds) 220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD tolerance (Note 6) 300V

Electrical Characteristics (Note 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM1558</th>
<th>LM1458</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>$T_A = 25˚C$, $R_S \leq 10 \text{ k} \Omega$</td>
<td>1.0</td>
<td>5.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$T_A = 25˚C$</td>
<td>80</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$T_A = 25˚C$</td>
<td>200</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>$T_A = 25˚C$</td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Supply Current Both Amplifiers</td>
<td>$T_A = 25˚C$, $V_S = \pm 15V$</td>
<td>3.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$T_A = 25˚C$, $V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L \geq 2 \text{ k} \Omega$</td>
<td>50</td>
<td>160</td>
<td>20</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$R_S \leq 10 \text{ k} \Omega$</td>
<td>6.0</td>
<td>7.5</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>500</td>
<td>300</td>
<td>nA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>1.5</td>
<td>0.8</td>
<td>µA</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L \geq 2 \text{ k} \Omega$</td>
<td>25</td>
<td>15</td>
<td>V/mV</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>$V_S = \pm 15V$, $R_L = 10 \text{ k} \Omega$, $R_C = 2 \text{ k} \Omega$</td>
<td>±12</td>
<td>±14</td>
<td>±12</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>$V_S = \pm 15V$, $R_L \leq 2 \text{ k} \Omega$</td>
<td>±12</td>
<td>±13</td>
<td>±10</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>$R_S \leq 10 \text{ k} \Omega$</td>
<td>70</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td>$R_S \leq 10 \text{ k} \Omega$</td>
<td>77</td>
<td>96</td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: The maximum junction temperature of the LM1558 is 150˚C, while that of the LM1458 is 100˚C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 187˚C/W, junction to ambient. For the DIP the device must be derated based on a thermal resistance of 150˚C/W, junction to ambient.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $V_S = \pm 15V$ and $−55˚C \leq T_A \leq 125˚C$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0˚C \leq T_A \leq 70˚C$ and $V_S = \pm 15V$.

Note 5: Refer to RETS 1558V for LM1558J and LM1558H military specifications.

Note 6: Human body model, 1.5 kΩ in series with 100 pF.
Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM1558H, LM1558H/883 or LM1458H
NS Package Number H08C

Small Outline Package (M)
Order Number LM1458M
NS Package Number M08A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Small Outline Package (M)
Order Number LM1458M
NS Package Number M08A

Molded Dual-In-Line Package (N)
Order Number LM1458N
NS Package Number N08E
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.