NPN Silicon RF Transistor

- For highest gain low noise amplifier at 1.8 GHz and 2 mA / 2 V
 Outstanding $G_{ms} = 23$ dB
 Noise Figure $F = 0.95$ dB
- For oscillators up to 15 GHz
- Transition frequency $f_T = 45$ GHz
- Gold metallization for high reliability
- **SIEGET® 45 - Line**
 - 45 GHz f_T - Line

ESD: Electrostatic discharge sensitive device, observe handling precaution!

<table>
<thead>
<tr>
<th>Type</th>
<th>Marking</th>
<th>Pin Configuration</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFP 520</td>
<td>APs</td>
<td>1 = B 2 = E 3 = C 4 = E</td>
<td>SOT-343</td>
</tr>
</tbody>
</table>

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CEO}</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Collector-base voltage</td>
<td>V_{CBO}</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Emitter-base voltage</td>
<td>V_{EBO}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Base current</td>
<td>I_B</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation, $T_S \leq 105 , ^\circ C$</td>
<td>P_{tot}</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_j</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>T_A</td>
<td>-65 ... 150</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-65 ... 150</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistance

| Junction - soldering point | R_{thJS} | ≤ 450 | K/W |

1T_S is measured on the emitter lead at the soldering point to the pcb
Electrical Characteristics

at $T_A = 25^\circ C$, unless otherwise specified.

Parameter	Symbol	Values $	$ Unit			
DC characteristics						
Collector-emitter breakdown voltage	$V_{(BR)CEO}$	2.5 $	$ 3 $	$ 3.5	V	
Collector-base cutoff current	I_{CBO}	- $	$ - $	$ 200	nA	
Emitter-base cutoff current	I_{EBO}	- $	$ - $	$ 35	µA	
DC current gain	h_{FE}	70 $	$ 110 $	$ 200	-	
AC characteristics (verified by random sampling)						
Transition frequency	f_T	- $	$ 45	GHz		
Collector-base capacitance	C_{cb}	- $	$ 0.06	pF		
Collector-emitter capacitance	C_{ce}	- $	$ 0.3	-		
Emitter-base capacitance	C_{eb}	- $	$ 0.35	-		
Noise figure	F	- $	$ 0.95	dB		
Power gain, maximum stable 1	G_{ms}	- $	$ 23	-		
Insertion power gain	$	S_{21}	^2$	- $	$ 21	dB
Third order intercept point at output	I_{P3}	- $	$ 25	dBm		
1dB compression point	P_{-1dB}	- $	$ 12	-		

$^1G_{ms} = |S_{21} / S_{12}|$
Common Emitter S-Parameters

<table>
<thead>
<tr>
<th>f (GHz)</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>V<sub>CE</sub> = 2 V, I_C = 20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.7244</td>
<td>-0.7</td>
<td>32.273</td>
<td>178.6</td>
</tr>
<tr>
<td>0.1</td>
<td>0.7251</td>
<td>-8.4</td>
<td>31.637</td>
<td>171.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6368</td>
<td>-40.7</td>
<td>27.293</td>
<td>140.7</td>
</tr>
<tr>
<td>1</td>
<td>0.4768</td>
<td>-73.6</td>
<td>19.601</td>
<td>113.5</td>
</tr>
<tr>
<td>2</td>
<td>0.2816</td>
<td>-123.8</td>
<td>11.021</td>
<td>84.9</td>
</tr>
<tr>
<td>3</td>
<td>0.2251</td>
<td>-166.1</td>
<td>7.481</td>
<td>67.6</td>
</tr>
<tr>
<td>4</td>
<td>0.2552</td>
<td>156.2</td>
<td>5.636</td>
<td>53.1</td>
</tr>
<tr>
<td>5</td>
<td>0.3207</td>
<td>133.6</td>
<td>4.488</td>
<td>39.7</td>
</tr>
<tr>
<td>6</td>
<td>0.3675</td>
<td>118.7</td>
<td>3.683</td>
<td>27.5</td>
</tr>
</tbody>
</table>

Common Emitter Noise Parameters

| f (GHz) | F_{min} 1) | G_a 1) | r_{opt} | R_N | r_n | $F_{50\Omega}$ 2) | $|S_{21}|^2$ 2) |
|-----------|---------------------|---------|-----------|-------|-------|-------------------|-----------------|
| | dB | dB | MAG | ANG | | - | dBA |
| V_{CE} = 2 V, I_C = 2 mA |
0.9	0.72	21.5	0.64	14	21.5	0.43	1.75
1.8	0.95	20.1	0.49	30	19.1	0.38	1.55
2.4	1.07	16.1	0.45	41	18.1	0.36	1.61
3	1.31	14.5	0.41	54	16.5	0.33	1.71
4	1.35	11.6	0.26	82	12.5	0.25	1.61
5	1.71	9.5	0.14	128	9.1	0.18	1.85
6	1.95	8.1	0.12	151	8.1	0.16	1.95

| V_{CE} = 2 V, I_C = 5 mA |
0.9	0.89	22.1	0.49	12	16.1	0.32	1.51
1.8	1.08	20.5	0.38	22	14.1	0.28	1.38
2.4	1.12	18.1	0.34	33	14.1	0.28	1.41
3	1.32	16.2	0.29	45	13.5	0.27	1.51
4	1.35	13.5	0.16	71	11.1	0.22	1.45
5	1.61	11.5	0.08	120	10.1	0.21	1.65
6	1.81	10.5	0.07	150	8.1	0.16	1.81

1) Input matched for minimum noise figure, output for maximum gain
2) $Z_S = Z_L = 50\Omega$

For more and detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/products/discrete/index.htm

Jun-09-2000
SPICE Parameters (Gummel-Poon Model, Berkeley-SPICE 2G.6 Syntax):

Transistor Chip Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>15 fA</td>
</tr>
<tr>
<td>VAF</td>
<td>25 V</td>
</tr>
<tr>
<td>NE</td>
<td>2</td>
</tr>
<tr>
<td>VAR</td>
<td>2 V</td>
</tr>
<tr>
<td>NC</td>
<td>2</td>
</tr>
<tr>
<td>RBM</td>
<td>7.5 Ω</td>
</tr>
<tr>
<td>CJE</td>
<td>235 fF</td>
</tr>
<tr>
<td>TF</td>
<td>1.7 ps</td>
</tr>
<tr>
<td>ITF</td>
<td>0.7 mA</td>
</tr>
<tr>
<td>VJC</td>
<td>0.661 V</td>
</tr>
<tr>
<td>TR</td>
<td>50 ns</td>
</tr>
<tr>
<td>MJS</td>
<td>0.333</td>
</tr>
<tr>
<td>XTI</td>
<td>0.035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>235</td>
</tr>
<tr>
<td>IKF</td>
<td>0.4 A</td>
</tr>
<tr>
<td>BR</td>
<td>1.5</td>
</tr>
<tr>
<td>IKR</td>
<td>0.01 A</td>
</tr>
<tr>
<td>RB</td>
<td>11 Ω</td>
</tr>
<tr>
<td>RE</td>
<td>0.6</td>
</tr>
<tr>
<td>VJE</td>
<td>0.958 V</td>
</tr>
<tr>
<td>XTF</td>
<td>10</td>
</tr>
<tr>
<td>PTF</td>
<td>50 deg</td>
</tr>
<tr>
<td>MJC</td>
<td>0.236</td>
</tr>
<tr>
<td>CJS</td>
<td>0 fF</td>
</tr>
<tr>
<td>XTB</td>
<td>-0.25</td>
</tr>
<tr>
<td>FC</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>1</td>
</tr>
<tr>
<td>ISE</td>
<td>25 fA</td>
</tr>
<tr>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>ISC</td>
<td>20 fA</td>
</tr>
<tr>
<td>IRB</td>
<td>A</td>
</tr>
<tr>
<td>RC</td>
<td>7.6 Ω</td>
</tr>
<tr>
<td>VJE</td>
<td>0.958 V</td>
</tr>
<tr>
<td>VTF</td>
<td>5 V</td>
</tr>
<tr>
<td>CJC</td>
<td>93 fF</td>
</tr>
<tr>
<td>XJC</td>
<td>1</td>
</tr>
<tr>
<td>VJS</td>
<td>0.75 V</td>
</tr>
<tr>
<td>EG</td>
<td>1.11 eV</td>
</tr>
</tbody>
</table>

Package Equivalent Circuit:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{BI}</td>
<td>0.47 nH</td>
</tr>
<tr>
<td>L_{BO}</td>
<td>0.53 nH</td>
</tr>
<tr>
<td>L_{EI}</td>
<td>0.23 nH</td>
</tr>
<tr>
<td>L_{EO}</td>
<td>0.05 nH</td>
</tr>
<tr>
<td>L_{CI}</td>
<td>0.56 nH</td>
</tr>
<tr>
<td>L_{CO}</td>
<td>0.58 nH</td>
</tr>
<tr>
<td>C_{BE}</td>
<td>136 fF</td>
</tr>
<tr>
<td>C_{CB}</td>
<td>6.9 fF</td>
</tr>
<tr>
<td>C_{CE}</td>
<td>134 fF</td>
</tr>
</tbody>
</table>

Valid up to 6GHz

The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet:
For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.

- Simulation of the package is not necessary for frequencies < 100MHz. For higher frequencies please add the wiring of the package equivalent circuit around the non-linear transistor.

Advantages of the common emitter configuration:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on the copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.
Total power dissipation $P_{tot} = f(T_A^*, T_S)$
* Package mounted on epoxy

Transition frequency $f_T = f(I_C)$
$ f = 2 \text{ GHz}$
$V_{CE} = \text{ parameter in V}$

Permissible Pulse Load $P_{thJS} = f(t_p)$

Permissible Pulse Load
$P_{tot_{max}}/P_{tot_{DC}} = f(t_p)$
Power gain $G_{ma}, G_{ms}, |S_{21}|^2 = f (f)$
$V_{CE} = 2V, I_C = 20 mA$

Power gain $G_{ma}, G_{ms} = f (I_C)$
$V_{CE} = 2V$
$f = parameter in GHz$

Collector-base capacitance $C_{cb} = f (V_{CB})$
$f = 1MHz$

Power gain $G_{ma}, G_{ms} = f (V_{CE})$
$I_C = 20 mA$
$f = parameter in GHz$
Noise figure $F = f(I_C)$

$V_{CE} = 2\, V$, $Z_S = Z_{Sopt}$

Source impedance for min. noise figure vs. Frequency

$V_{CE} = 2\, V$, $I_C = 2\, mA / 5\, mA$