The BA3126F and BA3126N are dual-channel tape head switching ICs designed for use in radio cassette players. These ICs are designed to withstand voltages of up to 120V peak-to-peak, and can handle large-amplitude bias signals during recording. Both devices have two channels, and are ideal for use in radio-cassette players.

The package types are 14-pin SOP for the BA3126F, and 9-pin SIP for the BA3126N.

Applications

Radio-cassette players

Features

1) High withstanding voltage

 (120V peak-to-peak at f = 100kHz).

2) Low "on" resistance

 (P / B SW: 8Ω, REC SW: 5Ω)

3) Low offset voltage

 (P / B SW: 5.0mV, REC SW: 0.6mV)

Absolute maximum ratings (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied voltage</td>
<td>Vcc</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA3126F</td>
<td>Pd</td>
<td>450*1</td>
<td>mW</td>
</tr>
<tr>
<td>BA3126N</td>
<td></td>
<td>950*2</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>Topr</td>
<td>-25~+75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>-55~+125</td>
<td>°C</td>
</tr>
<tr>
<td>DC withstanding voltage of P/B switch</td>
<td>BVdc</td>
<td>±65</td>
<td>V</td>
</tr>
</tbody>
</table>

*1 Reduced by 4.5mW for each increase in Ta of 1°C over 25°C
 (when mounted on a 50mm x 50mm, t = 1.6 mm, glass epoxy board).

*2 Reduced by 9.5mW for each increase in Ta of 1°C over 25°C

Recommended operating conditions (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating power supply voltage</td>
<td>Vcc</td>
<td>4.5</td>
<td>—</td>
<td>15</td>
<td>V</td>
</tr>
</tbody>
</table>
Block diagram

Internal circuit configuration

Pin numbers for the BA3126F (BA3126N pin numbers are in brackets).
Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 9.0V, measurement circuit : Figs. 7 and 8).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit current 1 (P / B)</td>
<td>IocP</td>
<td>--</td>
<td>12.0</td>
<td>24.0</td>
<td>mA</td>
<td>Vcc = 0V</td>
</tr>
<tr>
<td>Circuit current 2 (REC)</td>
<td>IocR</td>
<td>--</td>
<td>5.0</td>
<td>12.0</td>
<td>mA</td>
<td>Vcc = 5V</td>
</tr>
<tr>
<td>Resistance when REC switch on</td>
<td>RonR</td>
<td>--</td>
<td>5.0</td>
<td>10.0</td>
<td>Ω</td>
<td>Vcc = 5V</td>
</tr>
<tr>
<td>Resistance when P / B switch on</td>
<td>RonP</td>
<td>--</td>
<td>8.0</td>
<td>15.0</td>
<td>Ω</td>
<td>Vcc = 0V</td>
</tr>
<tr>
<td>REC switch leak current</td>
<td>IoffR</td>
<td>--</td>
<td>0</td>
<td>±4</td>
<td>μA</td>
<td>Vcc = 0V, E1 = ±0.1V</td>
</tr>
<tr>
<td>P / B switch leak current</td>
<td>IoffP</td>
<td>--</td>
<td>0</td>
<td>±10</td>
<td>μA</td>
<td>Vcc = 5V, E1 = ±65V</td>
</tr>
<tr>
<td>REC switch offset voltage</td>
<td>VofsR</td>
<td>--</td>
<td>0.6</td>
<td>6.0</td>
<td>mV</td>
<td>Vcc = 5V, In = 0mA</td>
</tr>
<tr>
<td>P / B switch offset voltage</td>
<td>VofsP</td>
<td>--</td>
<td>5.0</td>
<td>15.0</td>
<td>mV</td>
<td>Vcc = 0V, In = 0mA</td>
</tr>
<tr>
<td>P / B switch AC withstanding voltage</td>
<td>BVac</td>
<td>120</td>
<td>160</td>
<td>--</td>
<td>V</td>
<td>Vpp = 5V, f = 100kHz</td>
</tr>
<tr>
<td>Sink current when control pin is high</td>
<td>Ihigh</td>
<td>--</td>
<td>110</td>
<td>180</td>
<td>μA</td>
<td>Vcc = 5V (REC MODE)</td>
</tr>
<tr>
<td>Source current when control pin is low</td>
<td>Ilow</td>
<td>--</td>
<td>45</td>
<td>120</td>
<td>μA</td>
<td>Vcc = 0V (P/B MODE)</td>
</tr>
<tr>
<td>Control pin high threshold voltage</td>
<td>Vthh</td>
<td>--</td>
<td>3.5</td>
<td>3.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Control pin low threshold voltage</td>
<td>Vthl</td>
<td>0.5</td>
<td>0.7</td>
<td>--</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

© Not designed for radiation resistance.
Audio ICs

BA3126F / BA3126N

- Measurement circuit

BA3126F

![Measurement circuit diagram for BA3126F](image1)

BA3126N

![Measurement circuit diagram for BA3126N](image2)

Fig. 1

Fig. 2
Audio ICs

BA3126F / BA3126N

● Circuit operation
 (1) Playback mode
 When the control pin voltage goes below 0.5V, the REC SW goes off and the P / B SW goes on to put the IC into playback mode. In this mode, the playback signal from the head is sent to the P / B amplifier via the REC SW.

 (2) REC mode
 When the control pin voltage goes above 3.9V, the P / B SW goes off and the REC SW goes on to put the IC into record mode. In this mode, the recording signal from REC amplifier is transmitted to the head via the P / B SW.

● Operation notes
 (1) When the voltage on the control pin drops below 0.5V, (pin 5 for the BA3126F, and pin 4 for the BA3126N), the IC switches to P / B mode. When the voltage is 0V, the maximum source current generated is 120µA (I_LOW).
 When the voltage on the control pin goes above 3.9V, the IC switches to REC mode. When the voltage is 5V, the maximum sink current generated is 180µA (I_HIGH). When the control pin is open, the voltage on it is 3V_F (approximately 2.0V). All switches are on at this time.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Control pin voltage</th>
<th>Control pin sink current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>ON</td>
<td>0~0.5V</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>1.5~2.5V</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>3.9~V_CC</td>
</tr>
</tbody>
</table>

(2) P / B switch (BA3126F : pins 3 and 12, BA3126N : pins 3 and 7)
This switch is on during playback. Due to the characteristics of the transistor switch, the following DC voltage is generated:

$$V_{OFSP} < 15\text{mV} \quad (V_{CC} = 9.0V, V_{cont} = 0V)$$

This switch is off during recording. A built-in, high-withstanding voltage switch means that it can handle the large-amplitude bias signal generated by the bias generator.

Due to variations between individual ICs, we recommend that you keep the voltage below 120V_{P-P} (at f = 100kHz).

(3) REC switch (BA3126F : pins 1 and 14, BA3126N : pins 1 and 9)
This switch is on during recording. Due to the characteristics of the transistor switch, the following DC voltage is generated:

$$V_{OFSP} < 6\text{mV} \quad (V_{CC} = 9.0V, V_{cont} = 5V)$$

The switch is off during playback, and the playback signal from the head is transmitted to the playback amplifier.

(4) Recommended operating power supply voltage range
Operation of the basic functions of the application example circuit are guaranteed if operated within the stipulated power supply voltage and ambient temperature ranges. We cannot guarantee the ratings for the electrical characteristics, but they will not change radically if the circuit is operated within the stipulated power supply voltage and ambient temperature ranges.

(5) Transient characteristics during power supply switching
When the power is switched on and off in P / B mode (control pin low), a transient current may flow from the P / B SW to the REC SW.

If the head is in contact with the tape, and this current flows into the head, the frequency component will be recorded as a pop sound on the tape. Pay due consideration to the power supply on / off timing and the head position relationship.

(6) Playback-to-recording switching timing
If a large-amplitude signal from the bias oscillator is applied when the P / B SW is on, the P / B switch may latch if there is excessive current from the bias oscillator. If this happens, the P / B SW will not switch off when the control pin is driven high, and the IC will not enter REC mode. Design the timing so that when the IC is switched from playback to recording mode, the P / B SW goes off before the large-amplitude signal from the bias oscillator is applied to the P / B SW.
Audio ICs

Application example

BA3126F

![BA3126F Circuit Diagram](image)

Fig. 4

BA3126N

![BA3126N Circuit Diagram](image)

Fig. 5
Audio ICs

BA3126F / BA3126N

- **Electrical characteristics curves**

 - Fig. 6 Circuit current vs. Power supply voltage
 - Fig. 7 Circuit current vs. control pin voltage
 - Fig. 8 Control current vs. control voltage
 - Fig. 9 P/B SW AC withstanding voltage vs. frequency
 - Fig. 10 P/B SW pin voltage vs. P/B SW pin current
 - Fig. 11 REC SW pin voltage vs. REC SW pin current

- **External dimensions (Units: mm)**

 - BA3126F
 - SOP14
 - BA3126N
 - SIP9