The BA3835S and BA3835F are 5-band, band-pass filter ICs that use microprocessor time division to produce serial output for spectrum analyzer displays. To minimize the number of external components required and enable compact and reliable designs, all of the capacitors for the filters are on the chip.

Applications
CD radio cassette players, mini-component stereo systems, car stereos

Features
1) Five band-pass filter elements for spectrum analyzer displays.
2) High-speed readout (output response time: 5µsec. Typ.).
3) Discharge time constant circuit for each band is on the chip.
4) Differential input amplifier rejects common-mode noise.
5) Single 5V power supply.

Absolute maximum ratings (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>Vcc</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>BA3835S</td>
<td>600*1</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>BA3835F</td>
<td>450*2</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td>-25~75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>-55~125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1 Reduced by 6mW for each increase in Ta of 1°C over 25°C.
*2 Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>Vcc</td>
<td>4.5</td>
<td>5.0</td>
<td>6.5</td>
<td>V</td>
</tr>
</tbody>
</table>
Audio ICs

Block diagram 2 (BA3835F)

BA3835S / BA3835F

Vcc

AIN

8

A

GND

18

1

BIASC

VREFC

3

RREF

4

N.C.

5

DIFOUT

CIN

7

C

2

VM

REFERENCE CURRENT

100Hz

BPF

PEAK HOLD

340Hz

BPF

PEAK HOLD

1kHz

BPF

PEAK HOLD

3.4kHz

BPF

PEAK HOLD

10.5kHz

BPF

PEAK HOLD

MPX

BA3835F

DEC

10

A

11

B

12

C

13

N.C.

14

SEL

15

N.C.

16

TEST

17

AOUT

ROHM

603
Electrical characteristics (unless otherwise noted, $T_a = 25^\circ C$, $V_{CC} = 5V$, $R_L = 10M\Omega$, $V_{AIN} = -30dBV$ and $SEL = 1$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit current</td>
<td>I_{CC}</td>
<td>—</td>
<td>8.5</td>
<td>13</td>
<td>mA</td>
<td>$V_{AIN} = 0V$, A, B, C, $SEL = 0$</td>
</tr>
<tr>
<td>Maximum output level</td>
<td>V_{DM}</td>
<td>4.0</td>
<td>4.8</td>
<td>—</td>
<td>V</td>
<td>$V_{AIN} = -14dBV$, Measured at each output</td>
</tr>
<tr>
<td>Output offset voltage</td>
<td>V_{OS}</td>
<td>—</td>
<td>30</td>
<td>150</td>
<td>mV</td>
<td>$V_{AIN} = 0V$, $SEL = 0/1$ Measured at each output (cycle time : $T_s = 50ms$)</td>
</tr>
<tr>
<td>Standard output level 1</td>
<td>V_{O1}</td>
<td>0.65</td>
<td>1.35</td>
<td>1.70</td>
<td>V</td>
<td>$f_{IN} = 105Hz$, $A = 0$, $B = 0$, $C = 1$</td>
</tr>
<tr>
<td>Standard output level 2</td>
<td>V_{O2}</td>
<td>0.65</td>
<td>1.35</td>
<td>1.70</td>
<td>V</td>
<td>$f_{IN} = 340Hz$, $A = 0$, $B = 1$, $C = 0$</td>
</tr>
<tr>
<td>Standard output level 3</td>
<td>V_{O3}</td>
<td>0.65</td>
<td>1.35</td>
<td>1.70</td>
<td>V</td>
<td>$f_{IN} = 1kHz$, $A = 1$, $B = 0$, $C = 0$</td>
</tr>
<tr>
<td>Standard output level 4</td>
<td>V_{O4}</td>
<td>0.65</td>
<td>1.35</td>
<td>1.70</td>
<td>V</td>
<td>$f_{IN} = 3.4kHz$, $A = 1$, $B = 1$, $C = 0$</td>
</tr>
<tr>
<td>Standard output level 5</td>
<td>V_{O5}</td>
<td>0.65</td>
<td>1.35</td>
<td>1.70</td>
<td>V</td>
<td>$f_{IN} = 10.5kHz$, $A = 1$, $B = 1$, $C = 1$</td>
</tr>
<tr>
<td>Input impedance</td>
<td>R_{IN}</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Common-mode rejection ratio</td>
<td>$CMRR$</td>
<td>25</td>
<td>50</td>
<td>—</td>
<td>dB</td>
<td>$f_{IN} = 1kHz$, $V_{AIN} = V_{OUT}$</td>
</tr>
<tr>
<td>Logic input high level</td>
<td>V_{IH}</td>
<td>2.5</td>
<td>5.0</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic input low level</td>
<td>V_{IL}</td>
<td>—</td>
<td>0</td>
<td>0.5</td>
<td>V</td>
<td>Not applicable in the when item 3 of the operation notes applies.</td>
</tr>
<tr>
<td>Output response time*1</td>
<td>T_D</td>
<td>—</td>
<td>5</td>
<td>10</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Discharge level</td>
<td>DL</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>dB</td>
<td>Reset pulse width $T_R = 10 \mu s$ (Typ.) *2</td>
</tr>
</tbody>
</table>

*1 The time from the rise of A, B, C or SEL until the rise of A_{OUT} (90% of peak). If the output selection time is less than this, the output value is not guaranteed and the reset pulse is not generated.

*2 Automatically generated internally based on the output select signal. For the duration that this signal is "H", a resistor is connected to the peak hold capacitor, and the output level drops by -3dB (typ.) for one pulse.

*3 The Q of the bandpass filter is 3.5.

© Not designed for radiation resistance.
●Measurement circuit (BA3835S)

※The DIFOUT and SEL pins are different for the BA3835F.

Fig. 1
Output select logic table

<table>
<thead>
<tr>
<th>SEL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>105Hz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>340Hz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1kHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3.4kHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.5kHz</td>
</tr>
</tbody>
</table>

* ×: Don’t Care.

Timing chart

![Timing chart](image)

Fig. 2
Digital system GND

Chassis GND

Audio system GND

G-EQ

Fig. 3

※ The DIFOUT and SEL pins are different for the BA3835F.
Operation notes

(1) Frequency characteristics
The frequency characteristics of this IC are determined by the resistor connected between the R_{REF} terminal and GND. For the specification conditions, the value of this resistor is 100kΩ. If it is necessary to set the frequency characteristics accurately, use a variable resistor (note: all bands will shift together).

(2) Load characteristics
To convert the bias sense output signal to the GND sense signal, the IC performs a V / I conversion, and then an I / V conversion using a 10kΩ resistor (typ.) for the output. Therefore, if the load circuit connected to the A OUT pin has a MOS structure there is no problem (eg. microprocessor input port), but if the connected circuit has a low input impedance, it may cause the output level to drop.

(3) External resistor for the control pin
When using a common port for the output select control and FL drive, you must add a diode and resistor as shown in Fig. 4 to prevent the FL drive "L" voltage from destroying the IC.

And from this, the following condition is obtained:

$$R < 30k\Omega$$

In this case, the “L” level voltage V_2 for the IC will be:

$$V_2 < 0.75V$$

(4) Recommended operating ranges
Provided that the IC is operated within the recommended operating conditions and the recommended temperature range, the basic circuit functions are guaranteed. Within these ranges, ratings for electrical characteristics for conditions other than those stipulated cannot be guaranteed, but the inherent function of the bandpass filter will be maintained.

(5) Application circuit
Provided the recommended circuit constants are used, the application circuit should function correctly. However, we recommend that you confirm the characteristics of the circuits in actual use and pay due attention to the cautionary notes given below.

If you change the circuit constants, check both the static and transient characteristics of the circuit, and allow sufficient margin to accommodate variations between both ICs and external components. Note, also, that Rohm has not been able to conduct a sufficient study into patent rights.
(6) Output offset voltage

The relationship between the output offset voltage and the output selection cycle (cycle time) for this IC is shown in Fig.5. The maximum output offset voltage of 150mV that is given in the electrical characteristics table is under the condition that $T_s = 200\text{ms}$. When T_s is greater than 50ms, the graph of the output offset voltage is a straight line at 150mV. When T_s is below 50ms, due to transient characteristics of the peak hold circuit, the graph is a line sloping downwards to the right. In other words, the shorter the cycle, the larger the output offset voltage.

Furthermore, the output offset voltage may shift due to soldering or other temperature stresses from the surroundings. Therefore, when setting the spectral analyzer light level, take into consideration the points given above and make sure that it does not light by mistake during quiescent periods. Use the chart below as a guide for this, and, if necessary, leave even a larger margin.

- Electrical characteristics curves

![Fig. 6 BPF frequency characteristics](image)

![Fig. 7 Input level vs. output level](image)
External dimensions (Units: mm)

BA3835S

- 19.4±0.3 mm
- 6.5±0.3 mm
- 3.4±0.2 mm
- 1.778 mm
- 0.5±0.1 mm

SDIP18

BA3835F

- 11.2±0.2 mm
- 7.4±0.3 mm
- 5.4±0.2 mm
- 0.4±0.1 mm

SOP18