1. General description

The 74HC137 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). The 74HC137 is specified in compliance with JEDEC standard no. 7A.

The 74HC137 is a 3-to-8 line decoder, demultiplexer with latches at the three address inputs (An). The 74HC137 essentially combines the 3-to-8 decoder function with a 3-bit storage latch. When the latch is enabled (LE = LOW), the 74HC137 acts as a 3-to-8 active LOW decoder. When the latch enable (LE) goes from LOW-to-HIGH, the last data present at the inputs before this transition, is stored in the latches. Further address changes are ignored as long as LE remains HIGH.

The output enable input (E1 and E2) controls the state of the outputs independent of the address inputs or latch operation. All outputs are HIGH unless E1 is LOW and E2 is HIGH.

The 74HC137 is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems.

2. Features

- Combines 3-to-8 decoder with 3-bit latch
- Multiple input enable for easy expansion or independent controls
- Active LOW mutually exclusive outputs
- Low-power dissipation
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Multiple package options
- Specified from −40 °C to +80 °C and from −40 °C to +125 °C.
3. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL}, t_{PLH}</td>
<td>propagation delay</td>
<td>$C_L = 15 \text{ pF} \quad V_{CC} = 5 \text{ V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An to Y_n</td>
<td></td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>\overline{LE} to Y_n</td>
<td></td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>E1 to Y_n</td>
<td></td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>E2 to Y_n</td>
<td></td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

C_I is input capacitance, C_{PD} is power dissipation capacitance.

$P_D = C_{PD} \times V_{CC}^2 \times \frac{1}{2} \times N \times \sum(C_L \times V_{CC}^2) \times f_0$ where:

$\frac{1}{2} \times N$ is number of inputs switching;

$\sum(C_L \times V_{CC}^2) \times f_0$ = sum of outputs.

4. Ordering information

Table 2: Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Temperature range</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC137N</td>
<td>DIP16</td>
<td>$-40 \degree \text{C to } +125 \degree \text{C}$</td>
<td>塑料双排封装；16脚 (300 mil)</td>
<td>SOT38-4</td>
<td></td>
</tr>
<tr>
<td>74HC137D</td>
<td>SO16</td>
<td>$-40 \degree \text{C to } +125 \degree \text{C}$</td>
<td>塑料小外形封装；16脚；宽度3.9 mm</td>
<td>SOT109-1</td>
<td></td>
</tr>
<tr>
<td>74HC137DB</td>
<td>SSOP16</td>
<td>$-40 \degree \text{C to } +125 \degree \text{C}$</td>
<td>塑料小外形封装；16脚；宽度5.3 mm</td>
<td>SOT338-1</td>
<td></td>
</tr>
</tbody>
</table>
5. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. IEC logic symbol
6. Pinning information

6.1 Pinning

![Logic diagram]

Fig 4. Logic diagram

![Pin configuration]

Fig 5. Pin configuration
6.2 Pin description

Table 3: Pin description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>1</td>
<td>data input 0</td>
</tr>
<tr>
<td>A1</td>
<td>2</td>
<td>data input 1</td>
</tr>
<tr>
<td>A2</td>
<td>3</td>
<td>data input 2</td>
</tr>
<tr>
<td>LE</td>
<td>4</td>
<td>latch enable input (active LOW)</td>
</tr>
<tr>
<td>E1</td>
<td>5</td>
<td>data enable input 1 (active LOW)</td>
</tr>
<tr>
<td>E2</td>
<td>6</td>
<td>data enable input 2 (active HIGH)</td>
</tr>
<tr>
<td>Y7</td>
<td>7</td>
<td>multiplexer output 7</td>
</tr>
<tr>
<td>GND</td>
<td>8</td>
<td>ground (0 V)</td>
</tr>
<tr>
<td>Y6</td>
<td>9</td>
<td>multiplexer output 6</td>
</tr>
<tr>
<td>Y5</td>
<td>10</td>
<td>multiplexer output 5</td>
</tr>
<tr>
<td>Y4</td>
<td>11</td>
<td>multiplexer output 4</td>
</tr>
<tr>
<td>Y3</td>
<td>12</td>
<td>multiplexer output 3</td>
</tr>
<tr>
<td>Y2</td>
<td>13</td>
<td>multiplexer output 2</td>
</tr>
<tr>
<td>Y1</td>
<td>14</td>
<td>multiplexer output 1</td>
</tr>
<tr>
<td>Y0</td>
<td>15</td>
<td>multiplexer output 0</td>
</tr>
<tr>
<td>VCC</td>
<td>16</td>
<td>positive supply voltage</td>
</tr>
</tbody>
</table>

7. Functional description

7.1 Function table

Table 4: Function table [1]

<table>
<thead>
<tr>
<th>Enable</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>E1</td>
<td>Y0</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

[1] H = HIGH voltage level;
L = LOW voltage level;
X = don’t care.
8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>supply voltage</td>
<td>-0.5 to $+7$ V</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{IK}</td>
<td>input diode current</td>
<td>$V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V</td>
<td>-</td>
<td>±20</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OK}</td>
<td>output diode current</td>
<td>$V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V</td>
<td>-</td>
<td>±25</td>
<td>mA</td>
</tr>
<tr>
<td>I_O</td>
<td>output source or sink current</td>
<td>$V_O = -0.5$ V to $V_{CC} + 0.5$ V</td>
<td>-</td>
<td>±25</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CC}, I_{GND}</td>
<td>V_{CC} or GND current</td>
<td>-</td>
<td>±50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>-65 to $+150$ °C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>power dissipation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIP16 package</td>
<td>$[1]$ - 750 mW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO16 and SSOP16</td>
<td>packages</td>
<td>$[2]$ - 500 mW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Above 70 °C: P_{tot} derates linearly with 12 mW/K.
[2] Above 70 °C: P_{tot} derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 6: Recommended operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>supply voltage</td>
<td>2.0 to 6.0 V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_I</td>
<td>input voltage</td>
<td>0 to V_{CC}</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_O</td>
<td>output voltage</td>
<td>0 to V_{CC}</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>t_r, t_f</td>
<td>input rise and fall times</td>
<td>$V_{CC} = 2.0$ V</td>
<td>-</td>
<td>-</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 4.5$ V</td>
<td>-</td>
<td>6.0</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 6.0$ V</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature</td>
<td>-40 to $+125$ °C</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
10. Static characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(T_{\text{amb}} = 25 ^\circ \text{C})</th>
<th>(T_{\text{amb}} = -40 ^\circ \text{C to } +85 ^\circ \text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IH}})</td>
<td>HIGH-level input voltage</td>
<td>(V_{\text{CC}} = 2.0) (\text{V})</td>
<td>1.5</td>
<td>1.2 (\text{- V})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 4.5) (\text{V})</td>
<td>3.15</td>
<td>2.4 (\text{- V})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 6.0) (\text{V})</td>
<td>4.2</td>
<td>3.2 (\text{- V})</td>
</tr>
<tr>
<td>(V_{\text{IL}})</td>
<td>LOW-level input voltage</td>
<td>(V_{\text{CC}} = 2.0) (\text{V})</td>
<td>-</td>
<td>0.8 (\text{0.5 \text{V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 4.5) (\text{V})</td>
<td>-</td>
<td>2.1 (\text{1.35 \text{V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 6.0) (\text{V})</td>
<td>-</td>
<td>2.8 (\text{1.8 \text{V}})</td>
</tr>
<tr>
<td>(V_{\text{OH}})</td>
<td>HIGH-level output voltage</td>
<td>(V_{\text{I}} = V_{\text{IH}}) or (V_{\text{IL}})</td>
<td>(I_{\text{O}} = -20) (\mu \text{A}); (V_{\text{CC}} = 2.0) (\text{V})</td>
<td>1.9 (\text{2.0 \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = -20) (\mu \text{A}); (V_{\text{CC}} = 4.5) (\text{V})</td>
<td>4.4 (\text{4.5 \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = -20) (\mu \text{A}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>5.9 (\text{6.0 \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = -4) (\text{mA}); (V_{\text{CC}} = 4.5) (\text{V})</td>
<td>3.98 (\text{4.32 \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = -5.2) (\text{mA}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>5.48 (\text{5.81 \text{- V}})</td>
</tr>
<tr>
<td>(V_{\text{OL}})</td>
<td>LOW-level output voltage</td>
<td>(V_{\text{I}} = V_{\text{IH}}) or (V_{\text{IL}})</td>
<td>(I_{\text{O}} = 20) (\mu \text{A}); (V_{\text{CC}} = 2.0) (\text{V})</td>
<td>- (\text{0 \text{0.1 \text{V}} \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = 20) (\mu \text{A}); (V_{\text{CC}} = 4.5) (\text{V})</td>
<td>- (\text{0 \text{0.1 \text{V}} \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = 20) (\mu \text{A}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>- (\text{0 \text{0.1 \text{V}} \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = 4 \text{mA}); (V_{\text{CC}} = 4.5) (\text{V})</td>
<td>- (\text{0.15 \text{0.26 \text{V}} \text{- V}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{\text{O}} = 5.2 \text{mA}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>- (\text{0.16 \text{0.26 \text{V}} \text{- V}})</td>
</tr>
<tr>
<td>(I_{\text{IL}})</td>
<td>input leakage current</td>
<td>(V_{\text{I}} = V_{\text{CC}}) or (\text{GND}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>-</td>
<td>- (\text{±0.1 \text{\muA}})</td>
</tr>
<tr>
<td>(I_{\text{CC}})</td>
<td>quiescent supply current</td>
<td>(V_{\text{I}} = V_{\text{CC}}) or (\text{GND}); (I_{\text{O}} = 0) (\text{A}); (V_{\text{CC}} = 6.0) (\text{V})</td>
<td>-</td>
<td>- (\text{8.0 \text{\muA}})</td>
</tr>
<tr>
<td>(C_{\text{I}})</td>
<td>input capacitance</td>
<td>-</td>
<td>3.5</td>
<td>- (\text{pF})</td>
</tr>
</tbody>
</table>

At recommended operating conditions; voltages are referenced to \(\text{GND} \) (ground = 0 \text{V}).
Table 7: Static characteristics…continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>LOW-level output voltage</td>
<td>$V_I = V_{IH}$ or V_{IL}</td>
<td>$I_O = 20 \mu A$; $V_{CC} = 2.0$ V</td>
<td>-</td>
<td>-</td>
<td>0.1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$I_O = 20 \mu A$; $V_{CC} = 4.5$ V</td>
<td>-</td>
<td>-</td>
<td>0.1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$I_O = 20 \mu A$; $V_{CC} = 6.0$ V</td>
<td>-</td>
<td>-</td>
<td>0.1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$I_O = 4$ mA; $V_{CC} = 4.5$ V</td>
<td>-</td>
<td>-</td>
<td>0.33 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$I_O = 5.2$ mA; $V_{CC} = 6.0$ V</td>
<td>-</td>
<td>-</td>
<td>0.33 V</td>
</tr>
<tr>
<td>I_{LI}</td>
<td>input leakage current</td>
<td>$V_I = V_{CC}$ or GND; $V_{CC} = 6.0$ V</td>
<td>-</td>
<td>-</td>
<td>±1.0 \mu A</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>quiescent supply current</td>
<td>$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V</td>
<td>-</td>
<td>-</td>
<td>80 \mu A</td>
<td></td>
</tr>
</tbody>
</table>

$T_{amb} = -40$ °C to $+125$ °C

V_{IH} HIGH-level input voltage

V_{IH}	HIGH-level input voltage		$V_{CC} = 2.0$ V	1.5	-	-	V
			$V_{CC} = 4.5$ V	3.15	-	-	V
			$V_{CC} = 6.0$ V	4.2	-	-	V

V_{IL} LOW-level input voltage

V_{IL}	LOW-level input voltage		$V_{CC} = 2.0$ V	-	-	0.5 V
			$V_{CC} = 4.5$ V	-	-	1.35 V
			$V_{CC} = 6.0$ V	-	-	1.8 V

V_{OH} HIGH-level output voltage

V_{OH}	HIGH-level output voltage		$V_I = V_{IH}$ or V_{IL}	-	-	-	V
			$I_O = -20 \mu A$; $V_{CC} = 2.0$ V	1.9	-	-	V
			$I_O = -20 \mu A$; $V_{CC} = 4.5$ V	4.4	-	-	V
			$I_O = -20 \mu A$; $V_{CC} = 6.0$ V	5.9	-	-	V
			$I_O = -4$ mA; $V_{CC} = 4.5$ V	3.7	-	-	V
			$I_O = -5.2$ mA; $V_{CC} = 6.0$ V	5.2	-	-	V

V_{OL} LOW-level output voltage

V_{OL}	LOW-level output voltage		$V_I = V_{IH}$ or V_{IL}	-	-	-	V
			$I_O = 20 \mu A$; $V_{CC} = 2.0$ V	-	-	0.1 V	
			$I_O = 20 \mu A$; $V_{CC} = 4.5$ V	-	-	0.1 V	
			$I_O = 20 \mu A$; $V_{CC} = 6.0$ V	-	-	0.1 V	
			$I_O = 4$ mA; $V_{CC} = 4.5$ V	-	-	0.4 V	
			$I_O = 5.2$ mA; $V_{CC} = 6.0$ V	-	-	0.4 V	

I_{LI} input leakage current

| I_{LI} | input leakage current | | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0$ V | - | - | ±1.0 \mu A |

I_{CC} quiescent supply current

| I_{CC} | quiescent supply current | | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V | - | - | 160 \mu A |
11. Dynamic characteristics

Table 8: Dynamic characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GND = 0 V; t<sub>r</sub> = t<sub>f</sub> = 6 ns; C<sub>L</sub> = 50 pF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>amb</sub> = 25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>PHL</sub>, t<sub>PLH</sub></td>
<td>propagation delay An to Y<sub>n</sub></td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>-</td>
<td>58</td>
<td>180</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>-</td>
<td>21</td>
<td>36</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>-</td>
<td>17</td>
<td>31</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 5.0 V; C<sub>L</sub> = 15 pF</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>PHL</sub>, t<sub>PLH</sub></td>
<td>propagation delay E<sub>1</sub> to Y<sub>n</sub></td>
<td>see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>-</td>
<td>55</td>
<td>190</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>-</td>
<td>20</td>
<td>38</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>-</td>
<td>16</td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 5.0 V; C<sub>L</sub> = 15 pF</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>PHL</sub>, t<sub>PLH</sub></td>
<td>propagation delay E<sub>2</sub> to Y<sub>n</sub></td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>-</td>
<td>50</td>
<td>145</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>-</td>
<td>18</td>
<td>29</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>-</td>
<td>14</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 5.0 V; C<sub>L</sub> = 15 pF</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>THL</sub>, t<sub>TLH</sub></td>
<td>output transition time</td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>-</td>
<td>19</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>-</td>
<td>7</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>-</td>
<td>6</td>
<td>13</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>W</sub></td>
<td>E<sub>1</sub> pulse width HIGH</td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>50</td>
<td>11</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>9</td>
<td>3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>su</sub></td>
<td>set-up time An to E<sub>1</sub></td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>50</td>
<td>3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>h</sub></td>
<td>hold time An to E<sub>1</sub></td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.0 V</td>
<td>30</td>
<td>3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 6.0 V</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>C<sub>PD</sub></td>
<td>power dissipation capacitance</td>
<td>V<sub>I</sub> = GND to V<sub>CC</sub></td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>
Table 8: Dynamic characteristics...continued

\(GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PHL})</td>
<td>propagation delay An to (\overline{Y_n})</td>
<td>see Figure 6</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>(t_{PLH})</td>
<td>propagation delay (\overline{LE}) to (\overline{Y_n})</td>
<td>see Figure 7</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>41</td>
</tr>
<tr>
<td>(t_{E1})</td>
<td>propagation delay (E_1) to (\overline{Y_n})</td>
<td>see Figure 7</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>(t_{E2})</td>
<td>propagation delay (E_2) to (\overline{Y_n})</td>
<td>see Figure 6</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>(t_{THL})</td>
<td>output transition time</td>
<td>see Figure 6</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>-</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>(t_W)</td>
<td>(\overline{LE}) pulse width HIGH</td>
<td>see Figure 8</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{SU})</td>
<td>set-up time An to (\overline{LE})</td>
<td>see Figure 8</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{H})</td>
<td>hold time An to (\overline{LE})</td>
<td>see Figure 8</td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 8: Dynamic characteristics (continued)

GND = 0 V; \(t_r = t_f = 6 \text{ ns} \); \(C_L = 50 \text{ pF} \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PHL}), (t_{PLH})</td>
<td>propagation delay An to (\bar{Y}_n)</td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL}), (t_{PLH})</td>
<td>propagation delay (\bar{I}) to (\bar{Y}_n)</td>
<td>see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>285</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL}), (t_{PLH})</td>
<td>propagation delay (\bar{E}_1) to (\bar{Y}_n)</td>
<td>see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL}), (t_{PLH})</td>
<td>propagation delay (\bar{E}_2) to (\bar{Y}_n)</td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{THL}), (t_{TLH})</td>
<td>output transition time</td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{W})</td>
<td>(\bar{I}) pulse width HIGH</td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{SU})</td>
<td>set-up time An to (\bar{I})</td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{H})</td>
<td>hold time An to (\bar{I})</td>
<td>see Figure 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 2.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 6.0 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>ns</td>
</tr>
</tbody>
</table>

[1] \(C_{PD} \) is used to determine the dynamic power dissipation (\(P_D \) in \(\mu \text{W} \)).
\[
P_D = C_{PD} \times V_{CC}^2 \times t_i \times N + \sum(C_L \times V_{CC}^2 \times t_o)
\]
where:
- \(t_i \) = input frequency in MHz;
- \(t_o \) = output frequency in MHz;
- \(C_L \) = output load capacitance in pF;
- \(V_{CC} \) = supply voltage in V;
- \(N \) = number of inputs switching;
- \(\sum(C_L \times V_{CC}^2 \times t_o) \) = sum of outputs.

Table 8: Dynamic characteristics (continued)
12. Waveforms

Fig 6. Waveforms showing the address input (An) and enable input (E2) to output (\overline{Y}_n) propagation delays and the output transition times.

$V_M = 0.5 \times V_i.$

Fig 7. Waveforms showing the enable input (E1, LE) to output (\overline{Y}_n) propagation delays and the output transition times.

$V_M = 0.5 \times V_i.$

Fig 8. Waveforms showing the data set-up, hold times for An input to LE input and the latch enable pulse width.

The shaded areas indicate when the input is permitted to change for predictable output performance.

$V_M = 0.5 \times V_i.$
13. Application information

Test data is given in Table 9.
Definitions for test circuit:
- $R_T =$ Termination resistance should be equal to output impedance Z_o of the pulse generator.
- $C_L =$ Load capacitance including jig and probe capacitance.

Fig 9. Load circuitry for switching times

<table>
<thead>
<tr>
<th>Supply V_{CC}</th>
<th>Input V_I</th>
<th>t_r, t_f (ns)</th>
<th>Load C_L (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 V</td>
<td>V_{CC}</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>4.5 V</td>
<td>V_{CC}</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>6.0 V</td>
<td>V_{CC}</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>5.0 V</td>
<td>V_{CC}</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig 10. 6-to-64 line decoder with input address storage
14. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

Fig 11. Package outline SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>A1 min.</th>
<th>A2 max.</th>
<th>b</th>
<th>b1</th>
<th>b2</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>e1</th>
<th>L</th>
<th>M0</th>
<th>M1</th>
<th>W</th>
<th>Z(1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>4.2</td>
<td>0.51</td>
<td>3.2</td>
<td>1.73</td>
<td>0.53</td>
<td>1.25</td>
<td>0.36</td>
<td>19.50</td>
<td>6.48</td>
<td>2.54</td>
<td>7.62</td>
<td>3.60</td>
<td>8.25</td>
<td>10.0</td>
<td>0.254</td>
<td>0.76</td>
</tr>
<tr>
<td>inches</td>
<td>0.17</td>
<td>0.02</td>
<td>0.13</td>
<td>0.068</td>
<td>0.051</td>
<td>0.049</td>
<td>0.009</td>
<td>0.77</td>
<td>0.26</td>
<td>0.1</td>
<td>0.3</td>
<td>0.14</td>
<td>0.32</td>
<td>0.39</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

<table>
<thead>
<tr>
<th>OUTLINE VERSION</th>
<th>REFERENCES</th>
<th>EUROPEAN PROJECTION</th>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT38-4</td>
<td>IEC</td>
<td>JEDEC</td>
<td>JEITA</td>
</tr>
</tbody>
</table>

Fig 11. Package outline SOT38-4 (DIP16)
Philips Semiconductors

74HC137

3-to-8 line decoder, demultiplexer with address latches; inverting

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>b_p</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>H_E</th>
<th>L</th>
<th>L_p</th>
<th>Q</th>
<th>V</th>
<th>w</th>
<th>y</th>
<th>Z(1)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.25</td>
<td>0.25</td>
<td>0.49</td>
<td>0.25</td>
<td>10.0</td>
<td>4.0</td>
<td>1.27</td>
<td>6.2</td>
<td>1.05</td>
<td>1.0</td>
<td>0.7</td>
<td>0.25</td>
<td>0.7</td>
<td>0.1</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.004</td>
<td>0.057</td>
<td>0.049</td>
<td>0.01</td>
<td>0.019</td>
<td>0.014</td>
<td>0.00075</td>
<td>0.39</td>
<td>0.16</td>
<td>0.15</td>
<td>0.05</td>
<td>0.244</td>
<td>0.011</td>
<td>0.228</td>
<td>0.041</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION

<table>
<thead>
<tr>
<th>OUTLINE VERSION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT109-1</td>
<td>IEC</td>
</tr>
<tr>
<td></td>
<td>JEDEC</td>
</tr>
<tr>
<td></td>
<td>JEITA</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>EUROPean PROJECTION</th>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03-02-19</td>
</tr>
</tbody>
</table>

Fig 12. Package outline SOT109-1 (SO16)
Philips Semiconductors

74HC137

3-to-8 line decoder, demultiplexer with address latches; inverting

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>bD</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>HE</th>
<th>L</th>
<th>LP</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Z(1)</th>
<th>ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>2</td>
<td>0.21</td>
<td>1.80</td>
<td>0.25</td>
<td>0.38</td>
<td>0.20</td>
<td>6.4</td>
<td>6.0</td>
<td>0.65</td>
<td>1.9</td>
<td>7.9</td>
<td>7.6</td>
<td>1.25</td>
<td>1.03</td>
<td>0.9</td>
<td>0.2</td>
<td>0.13</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
</tr>
<tr>
<td>MO-150</td>
</tr>
</tbody>
</table>

Fig 13. Package outline SOT338-1 (SSOP16)
15. Revision history

Table 10: Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Doc. number</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC137_3</td>
<td>20041111</td>
<td>Product data sheet</td>
<td>-</td>
<td>9397 750 13804</td>
<td>74HC_HCT137_CNV_2</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format of this data sheet has been redesigned to comply with the current presentation and information standard of Philips Semiconductors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed type number 74HCT137.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inserted family specification.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC_HCT137_CNV_2</td>
<td>19970827</td>
<td>Product specification</td>
<td>-</td>
<td>-</td>
<td>74HC_HCT137_1</td>
</tr>
<tr>
<td>74HC_HCT137_1</td>
<td>19901201</td>
<td>Product specification</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
16. Data sheet status

<table>
<thead>
<tr>
<th>Level</th>
<th>Data sheet status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Objective data</td>
<td>Development</td>
<td>This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.</td>
</tr>
<tr>
<td>II</td>
<td>Preliminary data</td>
<td>Qualification</td>
<td>This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.</td>
</tr>
<tr>
<td>III</td>
<td>Product data</td>
<td>Production</td>
<td>This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com
20. Contents

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General description</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Quick reference data</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Ordering information</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Functional diagram</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Pinning information</td>
<td>4</td>
</tr>
<tr>
<td>6.1</td>
<td>Pinning</td>
<td>4</td>
</tr>
<tr>
<td>6.2</td>
<td>Pin description</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Functional description</td>
<td>5</td>
</tr>
<tr>
<td>7.1</td>
<td>Function table</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Limiting values</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Recommended operating conditions</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Static characteristics</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Dynamic characteristics</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>Waveforms</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Application information</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>Package outline</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Revision history</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>Data sheet status</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>Definitions</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Disclaimers</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>Contact information</td>
<td>18</td>
</tr>
</tbody>
</table>